第九章 曲线积分与曲面积分习题全解
习 题 9-1
1.计算下列对弧长的曲线积分:
(1)?(x?y)ds,其中L为连接(1,0)及(0,1)两点的直线段;
L解(1)因为直线方程为x?y?1,所以?L(x?y)ds??L1ds?2。
(2)?(x2?y2)nds,其中L为圆周x?acost,y?asint(0?t?2?);
L解(2)?(x2?y2)nds=?Lacost?asintL?2222?nds?a2n?Lds?2?a2n?1。
2(3)?xds,其中L为由直线y?x及抛物线y?x所围成的区域的整个边界;
L解(3)?Lxds??Lxds??Lxds??0x1?[(x)?]dx??0x1?[(x)?]dx
1212212??0x1?4x2dx??0x2dx?(4)?Lex2?y211121121[(1?4x2)3/2]1?[2x]?(55?62?1)。 0083212ds,其中L为圆周x2?y2?a2,直线y?x及x轴在第一象限内所围成的扇
形的整个边界.
解(4)设L?L1?L2?L3(如图9-10所示),则?Lex2?y2ds???Lei?1i3x2?y2ds
?x?x2a,ds?L1:?,0?x?2y?x??dx???dy?e2x22?2dx
2a20?Le1x?y22ds??02a2?2dx?e2x?ea?1
?x?acost?L2:?,0?t?,ds?a2sin2t?a2cos2tdt?adt
4?y?asint?L2ex2?y2ds??04ea?adt?2??4aea
?x?xL3:?,0?x?a,ds?y?0??dx???dy?2?dx
?L1ex2?y2ds??0exdx?ea?1
a 1
故 ?Lex2?y2ds???Lei?1i3x2?y2ds?ea?1?????aea?ea?1?ea?2?a??2。 44??2.计算下列对弧长的曲线积分: (1)??1ttty?esintds,其中为曲线,,上相应于t从0变x?ecostz?e?222x?y?z到2的这段弧; 解(1)由于 ds??dx???dy???dz?t2222
t2t2???e?cost?sint??????e?sint?cost?????e所以 ???dt?23etdt
21132?t3?t3t?2ds??3edt?edt??e?1?e??。 ??2222t0x?y?z2e20240(2)?x2yzds,其中?为折线ABCD,这里A、B、C、D依次为点(0,0,0)、(0,0,?2)、(1,0,2)、(1,3,2);
解(2)已知 ??AB?BC?CD, 注意到
AB: x?0,y?0,z?t , 0?t?2,BC:x?t,y?0,z?2 , 0?t?1
(在AB及BC上,被积函数xyz等于零,?222xyzds?xyzds?0) ?ABBC222CD:x?1,y?t,z?2 , 0?t?3,ds?2222?dx???dy???dz?23?dt,
则 ??xyzds??ABxyzds??BCxyzds??CDxyzds??CDxyzds??02tdt?9。 (3)?y2ds,其中L为摆线的一拱x?a(t?sint),y?a(1?cost)(0?t?2?);
L解(3)?Lyds??0a(1?cost)22?22[a(t?sint)?]2?[a(1?cost)?]2dt
2?2?1??0a2(1?cost)22a(1?cost)dt?2a3?042sin5tdt22?2?11112563?8a3?0sin4tsintdt?8a3?0(1?cos2t)2dcost?a。
22221522(4)?L(x?y)ds其中L为曲线x?a(cost?tsint),y?a(sint?tcost)(0?t?2?).
解(4)由于 ds??dx???dy??22??atcost???atsint?22dt?atdt ,
?2?222222所以 ?L(x?y)ds??0?a?cost?tsint??a?sint?tcost???atdt
2