重庆中考数学试卷(A卷)
一、选择题(本大题共12小题,每小题4分共48分) 1.实数﹣17的相反数是( ) 1
A. 17 B. C. ﹣17
17
D. ﹣
1 17
考点:实数的性质.
分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数. 解答:实数﹣17的相反数是17,故选A.
点评:本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.
2.计算2x6÷x4的结果是( )
A. x2 B. 2x2 C. 2x4 D. 2x10 考点:整式的除法.
分析:根据单项式除单项式的法则计算,再根据系数相等,相同字母的次数相同列式求解即可.
解答:原式=2x2,故选B.
点评:本题考查了单项式除单项式,理解法则是关键.
3.在a中,a的取值范围是( )
A. a≥0 B.a≤0 C.a>0 D.a<0 考点:二次根式有意义的条件.
分析:根据二次根式的性质:被开方数大于等于0,就可以求解. 解答:a的范围是:a≥0.故选A.
点评:本题考查的知识点为:二次根式的被开方数是非负数.
4.五边形的内角和是( ) A.180° B.360° C.540° D.600° 考点:多边形内角与外角.
分析:直接利用多边形的内角和公式进行计算即可. 解答:(5﹣2)?180°=540°.故选C.
点评:本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.
5.2014年1月1日零点,北京、上海、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃,当时这四个城市中,气温最低的是( )
A.北京 B.上海 C.重庆 D.宁夏 考点:有理数大小比较.
分析:根据正数大于0,0大于负数,可得答案. 解答:﹣8<﹣4<5<6,故选D.
点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.
2
6.关于x的方程 =1的解是( )
x-1A.x= 4 B.x=3 C.x=2 D.x=1
考点:解分式方程.
分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解答:去分母,得x﹣1=2 ,解得x=3, 经检验x=3是分式方程的解.故选B.
点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
7.2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、丙、丁的成绩的方差分别是0.11、0.03、0.05、0.02.则当天这四位运动员“110米跨栏”的训练成绩最稳定的是( ) A.甲 B.乙 C.丙 D.丁 考点:方差.
分析:根据方差越大,越不稳定去比较方差的大小即可确定稳定性的大小.
解答:∵甲、乙、丙、丁的成绩的方差分别是0.11、0.03、0.05、0.02,∴丁的方差最小, ∴丁运动员最稳定,故选D.
点评:本题考查了方差的知识,方差越大,越不稳定.
8.如图,直线AB∥CD,直线EF分别交直线AB、CD于点E、F,过点F作FG⊥FE,交直线AB于点G,若∠1=42°,则∠2的大小是( )
A.56° B.48° 考点:平行线的性质.
分析:根据两直线平行,同位角相等可得∠3=∠1,再根据垂直的定义可得∠GFE=90°,然后根据平角等于180°列式计算即可得解. 解答:∵AB∥CD,∴∠3=∠1=42°, ∵FG⊥FE,∴∠GFE=90°, ∴∠2=180°﹣90°﹣42°=48°.故选B.
C.46° D.40°
点评:本题考查了平行线的性质,垂直的定义,熟记性质并准确识图是解题的关键.
9.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是( )
A.30° B.45° C.60° D.70° 考点:圆周角定理.
11
分析:先根据圆周角定理得到∠ABC=∠AOC,由于∠ABC+∠AOC=90°,所以
22∠AOC+∠AOC=90°,然后解方程即可.
1
解答:∵∠ABC=∠AOC,而∠ABC+∠AOC=90°,
21
∴∠AOC+∠AOC=90°,∴∠AOC=60°.故选C. 2
点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
10.2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是( )
A. B. C. D.
考点:函数的图象.
分析:根据在电脑上打字录入这篇文稿,录入字数增加,因事暂停,字数不变,继续录入并加快了录入速度,字数增加,变化快,可得答案.
解答:A.暂停后继续录入并加快了录入速度,字数增加,不符合题意,故A错误; B.字数先增加再不变最后增加,不符合题意,故B错误;
C.开始字数增加的慢,暂停后再录入字数增加的快,故C符合题意; D.中间应有一段字数不变,不符合题意,故D错误;故选C.
点评:本题考查了函数图象,字数先增加再不变最后增加的快是解题关键.
11.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )
A. 20 B. 27 C. 35 D. 40 考点:规律型:图形的变化类. 分析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n=
n(n+3)
,进一步求得第(6)个图形中面积为1的正方形2
的个数即可.
解答:第(1)个图形中面积为1的正方形有2个, 第(2)个图形中面积为1的图象有2+3=5个,
第(3)个图形中面积为1的正方形有2+3+4=9个, …,
按此规律,
第n个图形中面积为1的正方形有2+3+4+…+(n+1)=
n(n+3)
个, 2
则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B.
点评:此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.
12.如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AOC的面积为( )
A.8 B.10 C.12 D.24 考点:反比例函数系数k的几何意义.
分析:根据已知点横坐标得出其纵坐标,进而求出直线AB的解析式,求出直线AB与x轴横坐标交点,即可得出△AOC的面积.
6
解答:∵反比例函数y=﹣在第二象限的图象上有两点A,B,它们的横坐标分别为﹣1,﹣
x3,
∴x=﹣1,y=6;x=﹣3,y=2, ∴A(﹣1,6),B(﹣3,2), 设直线AB的解析式为y=kx+b,
? -k+b=6, ? k=2, 则?解得? ? -3k+b=2, ? b=8,
∴一次函数的解析式为y=2x+8, ∴y=0时,x=﹣4,∴CO=4,
1
∴△AOC的面积为:×6×4=12.故选C.
2
点评:此题主要考查了反比例函数系数k的几何意义以及待定系数法求一次函数解析式,得出直线AB的解析式是解题关键.
二、填空题(本大题共6小题,每小题4分,共24分)
?? x=3, ? x=3,
13.方程组?的解是 ? .
? y=2 ? x+y=5 ?
考点:解二元一次方程组.
分析:方程组利用代入消元法求出解即可.
? x=3 ,① 解答:?
? x+y=5 ②
将①代入②,得y=2,
? x=3,
则方程组的解为?
? y=2. ? x=3,
故答案为?
? y=2.
点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 14.据有关部分统计,截止到2014年5月1日,重庆市私家小轿车达到563000辆,将563000这个数用科学记数法表示为 5.63×105 . 考点:科学记数法—表示较大的数.
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 解答:将563000用科学记数法表示为:5.63×105. 故答案为5.63×105.
点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
15.如图,菱形ABCD中,∠A=60°,BD=7,则菱形ABCD的周长为 28 .
考点:菱形的性质.
分析:根据菱形的性质可,得AB=AD,然后根据∠A=60°,可得△ABD为等边三角形,继而可得出边长以及周长.
解答:∵四边形ABCD为菱形,
重庆市2014年中考数学试题A卷(word版)中考数学真题试卷(2024年复习专题用)



