实用文档
EFEG=, ECED∵BG∥AD, BEEG∴=, AEEDEFBE∴=,
AEEC∴EFAE=BEEC.
22.如图,在△ABC中,AB=1,AC=2,∠BAC的平分线交BC于点E,取BC的中点D,作DF∥AE交AC于点F.求CF的长.
∴
解答:过点E作DG⊥AC于G,EH⊥AB于H,则EG=EH,
∵
S?ABES?AEC1ABEHSAB1BE=2==,?ABE=, 1S2CEAC?AECACEG2∴
BE1=, CE21BC, 2CFCD1BC1BE?CE1BE113∴==×=×=(+1)=(+1)=,
2CE22CE224CACECE333∴CF=×CA=×2=.
44223.如图,已知在△ABC中,∠ABC=2∠C,AD⊥BC于点D,E为BC的中点,连接AE,∠ABC的平分线BF交AC于点F.求证:AB=2DE.
∵DF∥AE,CD=BD=
解答:证明:连接EF,
∵∠ABC=2∠C,BF是∠ABC的平分线, ∴∠FBC=∠C=∴BF=CF, 又∵BE=CE, ∴EF⊥BC,
1∠ABC, 2
实用文档
又∵AD⊥BC, ∴EF∥AD,
AFDE=, FCEC∵BF是∠ABC的平分线, ABAF∴=, BCFCABDE∴=, BCECDEDE∴AB=BC×=2EC×=2DE,
ECEC即AB=2DE.
∴
沪科版九年级数学上册课时练习:22.1比例线段
实用文档EFEG=,ECED∵BG∥AD,BEEG∴=,AEEDEFBE∴=,AEEC∴EFAE=BEEC.22.如图,在△ABC中,AB=1,AC=2,∠BAC的平分线交BC于点E,取BC的中点D,作DF∥AE交AC于点F.求CF的长.∴解答:过点E作DG⊥AC于G,EH⊥AB于H,则EG=
推荐度:
点击下载文档文档为doc格式