2020年中考数学一轮复习培优训练:
《图形认识初步》
1.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.
(1)当点C,E,F在直线AB的同侧(如图1所示)时.∠AOC=38°时,求∠BOE和∠COF的度数,∠BOE和∠COF有什么数量关系?
(2)当点C与点E,F在直线AB的两旁(如图2所示)时,∠AOC=38°,(1)中∠BOE和∠COF的数量关系的结论是否成立?请给出你的结论并说明理由;
2.如图,O是直线AB上的一点,∠AOC=45°,OE是∠BOC内部的一条射线,且OF平分∠AOE.
(1)如图1,若∠COF=35°,求∠EOB的度数; (2)如图2,若∠EOB=40°,求∠COF的度数;
(3)如图3,∠COF与∠EOB有怎样的数量关系?请说明理由.
1
3.如图,将一副直角三角尺的直角顶点C叠放在一起.
(1)若∠DCE=35°,∠ACB= ;若∠ACB=140°,则∠DCE= ; (2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;
(3)若保持三角尺BCE不动,三角尺ACD的CD边与CB边重合,然后将三角尺ACD绕点C按逆时针方向
任意转动一个角度∠BCD.设∠BCD=α(0°<α<90°)
①∠ACB能否是∠DCE的4倍?若能求出α的值;若不能说明理由.
②三角尺ACD转动中,∠BCD每秒转动3°,当∠DCE=21°时,转动了多少秒?
4.点O是直线AB上的一点,∠COD=90°,射线OE平分∠BOC.
(1)如图1,如果∠AOC=50°,依题意补全图形,写出求∠DOE度数的思路(不需要写出完整的推理过程);
(2)将OD绕点O顺时针旋转一定的角度得到图2,使得OC在直线AB的上方,若∠AOC=α,其他条件不变,依题意补全图形,并求∠DOE的度数(用含α的代数式表示); (3)将OD绕点O继续顺时针旋转一周,回到图1的位置.在旋转过程中,你发现∠AOC与∠DOE(0°≤∠AOC≤180°,0°≤∠DOE≤180°)之间有怎样的数量关系?请直接写出你的发现.
2
5.点O为直线AB上一点,在直线AB同侧任作射线OC,OD,使得∠COD=90°. (1)如图1,过点O作射线OE,当OE恰好为∠AOC的角平分线时,另作射线OF,使得OF平分∠BOD,则∠EOF的度数是 (度).
(2)如图2,过点O作射线OE,当OE恰好为∠AOD的角平分线时,求出∠BOD与∠COE的数量关系;
(3)过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,若∠EOC=3∠EOF,直接写出∠AOE的度数.
6.已知∠AOB=100°,作射线OC,再分别∠AOC和∠BOC的平分线OD、OE. (1)如图①,当∠BOC=60°时,则∠DOE= 度;
(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,则∠DOE= ;(3)若∠AOB=m,当射线OC在∠AOB外绕O点旋转时,画出图形,判断∠DOE的 大小否发生变化若变化,说明理由;若不变,求∠DOE的度数.(用含m的代数式表示)
3