逻辑函数的表示方法论文:浅谈逻辑函数的表示方法及其相
互转换
逻辑函数是数字电路(一种开关电路)的特点及描述工具,输入、输出量是高、低电平,可以用二元常量(0,1)来表示,输入量和输出量之间的关系是一种逻辑上的因果关系。仿效普通函数的概念,数字电路可以用逻辑函数的的数学工具来描述。学好逻辑函数是学习数字电子技术必要的工具和基础,对数字电路的分析和设计具有重要的作用,逻辑函数的表示方法有哪些?它们之间又是如何相互转换呢?下面就谈一谈逻辑函数的表示方法及其相互转换。
一、逻辑函数的表示方法 1、逻辑函数
在数字系统的逻辑电路中,如果某一输出变量与一组输入变量存在着一定的对应关系,当输入变量取任意一组确定的值,输出变量的值也就唯一地被确定,则称这种关系为逻辑函数关系。即用有限个与、或、非逻辑运算符,按某种逻辑关系将逻辑变量a、b、c、...连接起来,所得的表达式f=f(a、b、c、...)称为逻辑函数。逻辑函数自身的特点:(1)逻辑变量和逻辑函数的取值只有0和1两种可能。(2)逻辑函数和逻辑变量之间的关系是由“或”、“与”、“非”三种基本逻辑运算决定的。
2、描述逻辑函数的常用方法有5种表示形式:真值表、逻辑表达式、卡诺图、逻辑图和波形图。
(1)真值表
真值表定义为:输入变量不同取值组合与函数值间的对应关系列成表格。真值表具有唯一性。其优点是:直观明了,便于将实际逻辑问题抽象成数学表达式。缺点是:难以用公式和定理进行运算和变换;量较多时,列函数真值表较繁琐。真值表列写方法:每一个变量均有0、1两种取值,n个变量共有2i种不同的取值,将这2i种不同的取值按顺序(一般按二进制递增规律)排列起来,同时在相应位置上填入函数的值,便可得到逻辑函数的真值表。
例如:y=ab+bc+ca其真值表为表1所示。 (2)逻辑函数表达式
逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。逻辑函数表达形式不是唯一的。其优点是:书写简洁方便,易用公式和定理进行运算、变换。缺点是:逻辑函数较复杂时,难以直接从变量取值看出函数的值。
表达式列写方法:取f=1的组合,输入变量值为1的表示成原变量,值为0的表示成反变量,然后将各变量相乘,最后将各乘积项相加,即得到函数的与或表达式。例如:
y=ab+bc+ca
(3)逻辑图
逻辑图是由基本门或复合门等逻辑符号及它们的连线构成的图。同一种逻辑功能可用不同的逻辑电路图表示,因此逻辑图不具有唯一性。其缺点是:最接近实际电路。优点是:由基本门或复合门等逻辑符号及它们的连线构成的图。例如:右图所示。
(4)波形图
波形图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形,即输入变量和对应的输出变量随时间变化的波形。波形图具有唯一性。其优点是:形象直观地表示了变量取值与函数值在时间上的对应关系。缺点是:难以用公式和定理进行运算和变换,当变量个数增多时,画图较麻烦。例如:右图所示。
(5) 卡诺图
卡诺图是将逻辑函数真值表中的各行排列成矩阵形式,在矩阵的左方和上方按照格雷码的顺序写上输入变量的取值,在矩阵的各个小方格内填入输入变量各组取值所对应的输出函数值,这样构成的图形就是卡诺图。如函数:
在变量a、b、c的取值分别为000、011、101、110所对应的小方格内填入1,其余小方格内填入0(也可以空着