至少要有一个必须是立体化学相互作用,才能形成稳定性不同的非对映体分子络合物,从而达到手性分离的目的。手性固定相的手性识别能力,主要取决于固定相与手性化合物两个对映体之间相互作用力的差别,通常情况下差别越大,往往也越有利于手性分离。在手性液相色谱中,根据固定相或手性选择体的不同,其与对映体之间的相互作用主要包括:π-π电荷转移相互作用、包结络合作用、偶极-偶极吸引作用、氢键相互作用和立体契合作用等。此外,由于采用的手性分离方法、分离模式、手性固定相或手性试剂及色谱条件不同,有可能通过各种不同类型的分子间相互作用而达到手性识别[31]。
在已报道的多糖衍生物手性固定相中,大多是用含不同取代基的苯基异氰酸酯修饰纤维素或直链淀粉后制备成手性固定相。对于这类手性固定相,异氰酸酯中苯环上取代基的位置、种类和数量都是决定CSP手性分离性能的关键因素:苯环上含有卤素等吸电子基团时,能分散氨基氮原子上的孤对电子,使氨基酸性增强[32],苯环上含烃基等供电子基团则能增加羰基中氧原子的电子云密度。这些都能增强手性选择体形成氢键的能力,有利于以氢键作用为主的手性识别。此外,研究还发现,多糖衍生物中缔合的酰胺越多,高分子的高级结构越规整,越有利于手性分离[33]。因此,在设计手性选择体的结构时,往往需要综合考虑。
参考文献
[1] 尤启冬, 林国强. 手性药物-研究与应用[M]. 北京: 化学工业出版社, 2004
[2] O’Neill M., Kelly S. M. Ordered materials for organic electronics and photonics[J]. Advanced Materials, 2011, 23: 566-584
[3] Shvydkiv O., Gallagher S., Nolan K., et al. From conventional to microphotochemistry: photodecarboxylation reactions involving phthalimides[J]. Organic Letters, 2010, 12(22): 5170-5173
[4]陈立仁. 液相色谱手性分离[M]. 北京: 科学出版社, 2006
[5] Ariens E. J., Wuis, E. W. Bias in pharmacokietics and clinical pharmacology[J]. Clinical Pharmacology & Therapeutics, 1987, 42: 361 -363
[6] Kasat R. B., Wang N-H. L., Franses E. I. Effects of backbone and side chain on the molecular environments of chiral cavities in polysaccharide-based biopolymers[J]. Biomacromolecules, 2007, 8: 1676-1685
[7] 宋航. 手性物技术[M]. 北京: 化学工业出版社, 2010
[8] Francotte E. R. Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers[J]. Journal of Chromatography A, 2001, 906(1-2): 379-397
[9] Gui, W., Tian, C., Sun, Q., et al. Simultaneous determination of organotin pesticides by HPLC-ICP-MS and their sorption, desorption, and transformation in freshwater sediments[J]. Water Research, 2016, 95: 185-194
[10] Shen J., Ikai T., Okamoto Y. Synthesis and application of immobilized
polysaccharide-based chiral stationary phases for enantioseparation by high-performance liquid chromatography[J]. Journal of Chromatography A, 2014, 1363: 51-61
[11] Moldoveanu S. C., David V. Essentials modern HPLC separations[M]. Elsevier Inc., Wyman Street, USA. 2013
[12] 张世浩. 手性农药对映体的高效液相色谱拆分及其热力学研究[D]. 浙江工业大学, 2006
[13] 姚彤炜. 手性药物分析[M]. 人民卫生出版社, 2008
[14] Ikai T., Okamoto Y. Structure control of polysaccharide derivatives for efficient
separation of enantiomers by chromatography[J]. Chemical Reviews, 2009, 109:
6077-6101
[15] Kotake M., Sakan T., Nakamura N., et al. Resolution into optical isomers of some amino
acids by paper chromatography[J]. J. Am. Chem. Soc., 1951, 73(6): 2973–2974. [16] Hesse G., Hagel R.. über inclusions-chromatographie und ein neues retentionsprinzip für
benzolderivate[J]. Chromatogra., 1976, 9(2): 62-68.
[17] Okamoto Y.. Helical polymers for efficient enantiomer separation [J]. Adv. Polym. Sci.,
2013, 261: 391-414.
[18] 宾琴. 异丁酰和苯甲酰壳聚糖手性固定相的制备及其分离性能[D], 硕士学位论文,
2014.
[19] Ichida A., Shibata T., Okamoto I., et al. Resolution of enantiomers by HPLC on cellulose
derivatives [J]. Chromatogra., 1984, 19(1): 280–284.
[20] Okamoto, Y., Kaida, Y.. Polysaccharide derivatives as chiral stationary phases in
HPLC[J]. J. High. Resol. Chromatogr., 1990, 13: 708-712.
[21] Ikai T., Yamamoto C., Kamigaito M., et al. Enantioseparation by HPLC using
phenylcarbonate, benzoylformate, p-toluenesulfonylcarbamate, and benzoylcarbamates of cellulose and amylose as chiral stationary phases[J]. Chirality, 2005, 17: 299–304. [22] Okamoto Y., Kawashima M., Hatada K.. Chromatographic resolution. 7. Useful chiral
packing materials for high-performance liquid chromatographic resolution of enantiomers: phenylcarbamates of polysaccharides coated on silica gel[J]. J. Am. Chem. Soc., 1984, 106: 5357-5359.
[23] Dicke R.. A straight way to regioselectively functionalized polysaccharide esters [J].
Cellulose, 2004, 11(2): 255-263
[24] Kondo S., Yamamoto C., Kamigaito M., et al. Synthesis and chiral recognition of novel
regioselectively substituted amylose derivatives [J]. Chem. Lett., 2008, 37: 558-559 [25] Tang S. W., Li X. F., Wang F., et al. Synthesis and hplc chiral recognition of
regioselectively carbamoylated cellulose derivatives [J]. Chirality, 2011, 24(2): 167-173. [26] Ikai T., Okamoto Y.. Structure control of polysaccharide derivatives for efficient
separation of enantiomers by chromatography[J]. Chem. Rev., 2009, 109: 6077-6101. [27] Ali I., Aboul-Enein H. Y.. Immobilized polysaccharide CSPs: An Advancement in
Enantiomeric Separations[J]. Curr. Pharm. Anal., 2007, 3: 71-82.
[28] 翁西伦, 鲍宗必, 罗飞等. 纤维素类手性色谱固定相的制备及其应用[J]. 化学进展,
2014, 26(2-3):415-423.
[29] Ikai T., Yamamoto C., Kamigaito M., et al. Immobilized-type chiral packing materials for
HPLC based on polysaccharide derivatives[J]. J. Chromatogr. B, 2008, 875(1): 2-11. [30] Dalgliesh C. E. The optical resolution of aromatic amino-acids on paper
chromatograms[J]. Journal of the Chemical Society, 1952, 137: 3940-3942
[31] L?mmerhofer M. Chiral recognition by enantioselective liquid chromatography:
Mechanisms and modern chiral stationary phases[J]. Journal of Chromatography A, 2010, 1217: 814-856
[32] Okamoto Y., Kawashima M., Hatada K. Controlled chiral recognition of cellulose
triphenylcarbamate derivatives supported on silica gel[J]. Journal of Chromatography, 1986, 363: 173-186
[33] Ikai T., Okamoto Y. Structural control of polysaccharide derivatives for efficient
separation of enantiomers by chromatography[J]. Chemical Reviews, 2009, 109(60): 6077-6101
环境分析化学作业



