经典文档 下载后可编辑复制
初中数学奥林匹克竞赛教程
经典文档 下载后可编辑复制
初中数学竞赛大纲(修订稿)
数学竞赛对于开发学生智力,开拓视野,促进教学改革,提高教学水平,发现和培养数学人才都有着积极的作用。目前我国中学生数学竞赛日趋规范化和正规化,为了使全国数学竞赛活动健康、持久地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《初中数学竞赛大纲(修订稿)》以适应当前形势的需要。 本大纲是在国家教委制定的九年义务教育制“初中数学教学大纲”精神的基础上制定的。《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性。”具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养……,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。同时,要重视培养学生的独立思考和自学的能力”。
《教学大纲》中所列出的内容,是教学的要求,也是竞赛的要求。除教学大纲所列内容外,本大纲补充列出以下内容。这些课外讲授的内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,处理好普及与提高的关系,这样才能加强基础,不断提高。 1、实数
十进制整数及表示方法。整除性,被2、3、4、5、8、9、11等数整除的判定。 素数和合数,最大公约数与最小公倍数。 奇数和偶数,奇偶性分析。 带余除法和利用余数分类。 完全平方数。
因数分解的表示法,约数个数的计算。 有理数的表示法,有理数四则运算的封闭性。 2、代数式
综合除法、余式定理。
拆项、添项、配方、待定系数法。 部分分式。
对称式和轮换对称式。 3、恒等式与恒等变形 恒等式,恒等变形。
经典文档 下载后可编辑复制
整式、分式、根式的恒等变形。 恒等式的证明。 4、方程和不等式
含字母系数的一元一次、二次方程的解法。一元二次方程根的分布。 含绝对值的一元一次、二次方程的解法。
含字母系数的一元一次不等式的解法,一元一次不等式的解法。 含绝对值的一元一次不等式。 简单的一次不定方程。 列方程(组)解应用题。 5、函数
y=|ax+b|,y=|ax2+bx+c|及 y=ax2+bx+c的图像和性质。
二次函数在给定区间上的最值。简单分式函数的最值,含字母系数的二次函数。 6、逻辑推理问题
抽屉原则(概念),分割图形造抽屉、按同余类造抽屉、利用染色造抽屉。 简单的组合问题。 逻辑推理问题,反证法。 简单的极端原理。 简单的枚举法。 7、几何
四种命题及其关系。
三角形的不等关系。同一个三角形中的边角不等关系,不同三角形中的边角不等关系。 面积及等积变换。
三角形的心(内心、外心、垂心、重心)及其性质。
经典文档 下载后可编辑复制
第一讲 整数问题:特殊的自然数之一
A1-001 求一个四位数,它的前两位数字及后两位数字分别相同,而该数本身等于一个整数的平方.
【题说】 1956年~1957年波兰数学奥林匹克一试题1.
x=1000a+100a+10b+b =11(100a+b)
其中0<a≤9,0≤b≤9.可见平方数x被11整除,从而x被112整除.因此,数100a+b=99a+(a+b)能被11整除,于是a+b能被11整除.但0<a+b≤18,以a+b=11.于是x=112(9a+1),由此可知9a+1是某个自然数的平方.对a=1,2,…,9逐一检验,易知仅a=7时,9a+1为平方数,故所求的四位数是7744=882.
A1-002 假设n是自然数,d是2n2的正约数.证明:n2+d不是完全平方.
【题说】 1953年匈牙利数学奥林匹克题2.
【证】 设2n2=kd,k是正整数,如果 n2+d是整数 x的平方,那么
k2x2=k2(n2+d)=n2(k2+2k)
但这是不可能的,因为k2x2与n2都是完全平方,而由k2<k2+2k<(k+1)2得出k2+2k不是平方数.
A1-003 试证四个连续自然数的乘积加上1的算术平方根仍为自然数.
【题说】 1962年上海市赛高三决赛题 1. 【证】 四个连续自然数的乘积可以表示成
n(n+1)(n+2)(n+3)=(n2+3n)(n2+8n+2)=(n2+3n+1)2-1
因此,四个连续自然数乘积加上1,是一完全平方数,故知本题结论成立.
A1-004 已知各项均为正整数的算术级数,其中一项是完全平方数,证明:此级数一定含有无穷多个完全平方数.
【题说】 1963年全俄数学奥林匹克十年级题2.算术级数有无穷多项. 【证】 设此算术级数公差是 d,且其中一项 a=m2(m∈N).于是
a+(2km+dk2)d=(m+kd)2
对于任何k∈N,都是该算术级数中的项,且又是完全平方数.
经典文档 下载后可编辑复制
A1-005 求一个最大的完全平方数,在划掉它的最后两位数后,仍得到一个完全平方数(假定划掉的两个数字中的一个非零).
【题说】 1964年全俄数学奥林匹克十一年级题 1.
【解】 设 n2满足条件,令n2=100a2+b,其中 0<b<100.于是 n>10a,即 n≥10a+1.因此
b=n2100a2≥20a+1
由此得 20a+1<100,所以a≤4.
经验算,仅当a=4时,n=41满足条件.若n>41则n2-402≥422-402>100.因此,满足本题条件的最大的完全平方数为412=1681.
A1-006 求所有的素数p,使4p2+1和6p2+1也是素数. 【题说】 1964年~1965年波兰数学奥林匹克二试题 1.
【解】 当p≡±1(mod 5)时,5|4p2+1.当p≡±2(mod 5)时,5|6p2+1.所以本题只有一个解p=5.
A1-007 证明存在无限多个自然数a有下列性质:对任何自然数n,z=n4+a都不是素数. 【题说】 第十一届(1969年)国际数学奥林匹克题1,本题由原民主德国提供. 【证】 对任意整数m>1及自然数n,有 n4+4m4=(n2+2m2)2-4m2n2 =(n2+2mn+2m2)(n2-2mn+2m2)
而 n2+2mn+2m2>n2-2mn+2m2 =(n-m)2+m2≥m2>1
故 n4+4m4不是素数.取 a=4·24,4·34,…就得到无限多个符合要求的 a.
第二讲 整数问题:特殊的自然数之二
A1-008 将某个17位数的数字的顺序颠倒,再将得到的数与原来的数相加.证明:得到的和中至少有一个数字是偶数.
【题说】 第四届(1970年)全苏数学奥林匹克八年级题 4. 【证】 假设和的数字都是奇数.在加法算式