好文档 - 专业文书写作范文服务资料分享网站

小学数学奥数基础教程(四年级)目30讲全

天下 分享 时间: 加入收藏 我要投稿 点赞

例5 从1~9这九个自然数中选出八个填入下式的八个○内,使得算式的结果尽可能大:

[○÷○×(○+○)]-[○×○+○-○]。

分析与解:为使算式的结果尽可能大,应当使前一个中括号内的结果尽量大,后一个中括号内的结果尽量小。为叙述方便,将原式改写为: [A÷B×(C+D)]-[E×F+G-H]。 通过分析,A,C,D,H应尽可能大,且A应最大,C,D次之,H再次之;B,E,F,G应尽可能小,且B应最小,E,F次之,G再次之。于是得到A=9,C=8,D=7,H=6,B=1,E=2,F=3,G=4,其中C与D,E与F的值可互换。将它们代入算式,得到 [9÷1×(8+7)]-[2×3+4-6]=131。 练习9

1.在下面的算式里填上括号,使等式成立:

(1)4×6+24÷6-5=15; (2)4×6+24÷6-5=35; (3)4×6+24÷6-5=48; (4)4×6+24÷6-5=0。 2.加上适当的运算符号和括号,使下式成立:

1 2 3 4 5 =100。

3.把0~9这十个数字填到下面的□里,组成三个等式(每个数字只能填一次): □+□=□, □-□=□, □×□=□□。

4.在下面的□里填上+,-,×,÷,()等符号,使各个等式成立: 4□4□4□4=1, 4□4□4□4=3, 4□4□4□4=5, 4□4□4□4=9。

5.将2~7这六个数字分别填入下式的□中,使得等式成立: □+□-□=□×□÷□。 6.将1~9分别填入下式的九个□内,使算式取得最大值: □□□×□□□×□□□。

小学奥数基础教程(四年级)

7.将1~8分别填入下式的八个□内,使算式取得最小值: □□×□□×□□×□□。

第10讲 数字谜(二)

例1 把下面算式中缺少的数字补上:

分析与解:一个四位数减去一个三位数,差是一个两位数,也就是说被减数与减数相差不到100。四位数与三位数相差不到100,三位数必然大于900,四位数必然小于1100。由此我们找出解决本题的突破口在百位数上。 (1)填百位与千位。由于被减数是四位数,减数是三位数,差是两位数,所以减数的百位应填9,被减数的千位应填1,百位应填0,且十位相减时必须向百位借1。

(2)填个位。由于被减数个位数字是0,差的个位数字是1,所以减数的个位数字是9。

(3)填十位。由于个位向十位借1,十位又向百位借1,所以被减数十位上的实际数值是18,18分解成两个一位数的和,只能是9与9,因此,减数与差的十位数字都是9。 所求算式如右式。

由例1看出,考虑减法算式时,借位是一个重要条件。

例2 在下列各加法算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,求出这两个算式:

分析与解:(1)这是一道四个数连加的算式,其特点是相同数位上的数字相同,且个位与百位上的数字相同,即都是汉字“学”。

- 11 -

从个位相同数相加的情况来看,和的个位数字是8,有两种可能情况:2+2+2+2=8与7+7+7+7=28,即“学”=2或7。

如果“学”=2,那么要使三个“数”所代表的数字相加的和的个位数字为8,“数”只能代表数字6。此时,百位上的和为“学”+“学”+1=2+2+1=5≠4。因此“学”≠2。 如果“学”=7,那么要使三个“数”所代表的数字相加再加上个位进位的2,和的个位数字为8,“数”只能代表数字2。百位上两个7相加要向千位进位1,由此可得“我”代表数字3。 满足条件的解如右式。

(2)由千位看出,“努”=4。由千、百、十、个位上都有“努”,5432-4444=988,可将竖式简化为左下式。同理,由左下式看出,“力”=8,988-888=100,可将左下式简化为下中式,从而求出“学”=9,“习”=1。 满足条件的算式如右下式。

例2中的两题形式类似,但题目特点并不相同,解法也不同,请同学们注意比较。

例3 下面竖式中每个汉字代表一个数字,不同的汉字代表不同的数字,求被乘数。

分析与解:由于个位上的“赛”ד赛”所得的积不再是“赛”,而是另一个数,所以“赛”的取值只能是2,3,4,7,8,9。

下面采用逐一试验的方法求解。

(1)若“赛”=2,则“数”=4,积=444444。被乘数为444444÷2=222222,而被乘数各个数位上的数字各不相同,所以“赛”≠2。 (2)若“赛”=3,则“数”=9,仿(1)讨论,也不行。

(3)若“赛”=4,则“数”=6,积=666666。666666÷4得不到整数商,不合题意。

(4)若“赛”=7,则“数”=9,积=999999。被乘数为999999÷7=142857,符合题意。

(5)若“赛”=8或9,仿上讨论可知,不合题意。

所以,被乘数是142857。 例4 在□内填入适当的数字,使左下式的乘法竖式成立。

分析与解:为清楚起见,我们用A,B,C,D,?表示□内应填入的数字(见右上式)。

由被乘数大于500知,E=1。由于乘数的百位数与被乘数的乘积的末位数是5,故B,C中必有一个是5。若C=5,则有

6□□×5=(600+□□)×5=3000+□□×5,

不可能等于□5□5,与题意不符,所以B=5。再由B=5推知G=0或5。若G=5,则F=A=9,此时被乘数为695,无论C为何值,它与695的积不可能等于□5□5,与题意不符,所以G=0,F=A=4。此时已求出被乘数是645,经试验只有645×7满足□5□5,所以C=7;最后由B=5,G=0知D为偶数,经试验知D=2。 右式为所求竖式。

小学奥数基础教程(四年级)

此类乘法竖式题应根据已给出的数字、乘法及加法的进位情况,先填比较容易的未知数,再依次填其余未知数。有时某未知数有几种可能取值,需逐一试验决定取舍。

例5 在□内填入适当数字,使左下方的除法竖式成立。

分析与解:把左上式改写成右上式。根据除法竖式的特点知,B=0,D=G=1,

E=F=H=9,因此除数应是99的两位数的约数,可能取值有11,33和99,再由商的个位数是5以及5与除数的积是两位数得到除数是11,进而知A=C-9。至此,除数与商都已求出,其余未知数都可填出(见右式)。

此类除法竖式应根据除法竖式的特点,如商的空位补0、余数必须小于除数,以及空格间的相互关系等求解,只要求出除数和商,问题就迎刃而解了。

例6 把左下方除法算式中的*号换成数字,使之成为一个完整的式子(各*所表示的数字不一定相同)。

- 12 -

分析与解:由上面的除法算式容易看出,商的十位数字“*”是0,即商为

因为除数与8的积是两位数,除数与商的千位数字的积是三位数,知商的千位数是9,即商为9807。 因为“除数×9”是三位数,所以除数≥12;又因为“除数×8”是两位数,所以除数≤12。推知除数只能是12。被除数为9807×12=117684。 除法算式如上页右式。

练习10

1.在下面各竖式的□内填入合适的数字,使竖式成立:

2.右面的加法算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。问:“小”代表什么数字?

3.在下列各算式中,不同的汉字代表不同的数字相同的汉字代表相同的数字。求出下列各式:

4.在下列各算式中,相同的字母代表相同的数字,不同的字母代表不同的数字。这些算式中各字母分别代表什么数字?

第11讲 归一问题与归总问题 在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。用这种解题思路解答的应用题,称为归一问题。所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。

例1 一种钢轨,4根共重1900千克,现在有95000千克钢,可以制造这种钢轨多少根?(损耗忽略不计) 分析:以一根钢轨的重量为单一量。

(1)一根钢轨重多少千克? 1900÷4=475(千克)。 (2)95000千克能制造多少根钢轨?

95000÷475=200(根)。 解:95000÷(1900÷4)=200(根)。 答:可以制造200根钢轨。 例2 王家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克?

分析:以1头奶牛1天产的牛奶为单一量。

(1)1头奶牛1天产奶多少千克? 630÷5÷7=18(千克)。 (2)8头奶牛15天可产牛奶多少千克?

小学奥数基础教程(四年级) 18×8×15=2160(千克)。 解:(630÷5÷7)×8×15=2160(千 克)。

答:可产牛奶2160千克。 例3 三台同样的磨面机2.5时可以磨面粉2400千克,8台这样的磨面机磨

25600千克面粉需要多少时间? 分析与解:以1台磨面机1时磨的面粉为单一量。

(1)1台磨面机1时磨面粉多少千克?

2400÷3÷2.5=320(千克)。 (2)8台磨面机磨25600千克面粉需要多少小时? 25600÷320÷8=10(时)。 综合列式为

25600÷(2400÷3÷2.5)÷8=10(时)。

例4 4辆大卡车运沙土,7趟共运走沙土336吨。现在有沙土420吨,要求5趟运完。问:需要增加同样的卡车多少辆?

分析与解:以1辆卡车1趟运的沙土为单一量。

(1)1辆卡车1趟运沙土多少吨? 336÷4÷7=12(吨)。 (2)5趟运走420吨沙土需卡车多少辆?

420÷12÷5=7(辆)。 (3)需要增加多少辆卡车? 7-4=3(辆)。 综合列式为

420÷(336÷4÷7)÷5-4=3(辆)。

与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果。所谓“总量”是指总路程、总产量、工作总量、物品的总价等。

例5 一项工程,8个人工作15时可以完成,如果12个人工作,那么多少小时可以完成?

分析:(1)工程总量相当于1个人工作多少小时? 15×8=120(时)。

(2)12个人完成这项工程需要多少小时?

- 13 -

120÷12=10(时)。 解:15×8÷12=10(时)。 答:12人需10时完成。

例6 一辆汽车从甲地开往乙地,每小时行60千米,5时到达。若要4时到达,则每小时需要多行多少千米? 分析:从甲地到乙地的路程是一定的,以路程为总量。

(1)从甲地到乙地的路程是多少千米?

60×5=300(千米)。

(2)4时到达,每小时需要行多少千米?

300÷4=75(千米)。 (3)每小时多行多少千米? 75-60=15(千米)。

解:(60×5)÷4——60=15(千米)。 答:每小时需要多行15千米。 例7 修一条公路,原计划60人工作,80天完成。现在工作20天后,又增加了30人,这样剩下的部分再用多少天可以完成?

分析:(1)修这条公路共需要多少个劳动日(总量)?

60×80=4800(劳动日)。 (2)60人工作20天后,还剩下多少劳动日?

4800-60×20=3600(劳动日)。 (3)剩下的工程增加30人后还需多少天完成?

3600÷(60+30)=40(天)。 解:(60×80-60×20)÷(60+30)=40(天)。

答:再用40天可以完成。 练习11

1.2台拖拉机4时耕地20公顷,照这样速度,5台拖拉机6时可耕地多少公顷?

2.4台织布机5时可以织布2600米,24台织布机几小时才能织布24960米?

3.一种幻灯机,5秒钟可以放映80张片子。问:48秒钟可以放映多少张片子?

4.3台抽水机8时灌溉水田48公顷,照这样的速度,5台同样的抽水机6时可以灌溉水田多小公顷?

5.平整一块土地,原计划8人平整,每天工作7.5时,6天可以完成任务。由于急需播种,要求5天完成,并且增加1人。问:每天要工作几小时?

6.食堂管理员去农贸市场买鸡蛋,原计划按每千克3.00元买35千克。结果鸡蛋价格下调了,他用这笔钱多买了2.5千克鸡蛋。问:鸡蛋价格下调后是每千克多少元? 7.锅炉房按照每天4.5吨的用量储备了120天的供暖煤。供暖40天后,由于进行了技术改造,每天能节约0.9吨煤。问:这些煤共可以供暖多少天? 第12讲 年龄问题

年龄问题是一类以“年龄为内容”的数学应用题。

年龄问题的主要特点是:二人年龄的差保持不变,它不随岁月的流逝而改变;二人的年龄随着岁月的变化,将增或减同一个自然数;二人年龄的倍数关系随着年龄的增长而发生变化,年龄增大,倍数变小。 根据题目的条件,我们常将年龄问题化为“差倍问题”、“和差问题”、“和倍问题”进行求解。 例1 儿子今年10岁,5年前母亲的年龄是他的6倍,母亲今年多少岁? 分析与解:儿子今年10岁,5年前的年龄为5岁,那么5年前母亲的年龄为5×6=30(岁),因此母亲今年是 30+5=35(岁)。

例2 今年爸爸48岁,儿子20岁,几年前爸爸的年龄是儿子的5倍? 分析与解:今年爸爸与儿子的年龄差为“48——20”岁,因为二人的年龄差不随时间的变化而改变,所以当爸爸的年龄为儿子的5倍时,两人的年龄差还是这个数,这样就可以用“差倍问题”的解法。当爸爸的年龄是儿子年龄的5倍时,儿子的年龄是 (48——20)÷(5——1)=7(岁)。 由20-7=13(岁),推知13年前爸爸的年龄是儿子年龄的5倍。 例3 兄弟二人的年龄相差5岁,兄3年后的年龄为弟4年前的3倍。问:兄、弟二人今年各多少岁?

分析与解:根据题意,作示意图如下:

小学奥数基础教程(四年级)

由上图可以看出,兄3年后的年龄比弟4年前的年龄大5+3+4=12(岁),由“差倍问题”解得,弟4年前的年龄为(5+3+4)÷(3-1)=6(岁)。由此得到 弟今年6+4=10(岁), 兄今年10+5=15(岁)。 例4 今年兄弟二人年龄之和为55岁,哥哥某一年的岁数与弟弟今年的岁数相同,那一年哥哥的岁数恰好是弟弟岁数的2倍,请问哥哥今年多少岁? 分析与解:在哥哥的岁数是弟弟的岁数2倍的那一年,若把弟弟岁数看成一份,那么哥哥的岁数比弟弟多一份,哥哥与弟弟的年龄差是1份。又因为那一年哥哥岁数与今年弟弟岁数相等,所以今年弟弟岁数为2份,今年哥哥岁数为2+1=3(份)(见下页图)。 由“和倍问题”解得,哥哥今年的岁数为

55÷(3+2)×3=33(岁)。

例5 哥哥5年前的年龄与妹妹4年后的年龄相等,哥哥2年后的年龄与妹妹8年后的年龄和为97岁,请问二人今年各多少岁?

分析与解:由“哥哥5年前的年龄与妹妹4年后的年龄相等”可知兄妹二人的年龄差为“4+5”岁。由“哥哥2年后的年龄与妹妹8年后的年龄和为97岁”,可知兄妹二人今年的年龄和为“97——2——8”岁。由“和差问题”解得,

兄[(97——2——8)+(4+5)]÷2=48(岁),

妹[(97——2——8)-(4+5)]÷2=39(岁)。

- 14 -

例6 1994年父亲的年龄是哥哥和弟弟年龄之和的4倍。2000年,父亲的年龄是哥哥和弟弟年龄之和的2倍。问:父亲出生在哪一年?

分析与解:如果用1段线表示兄弟二人1994年的年龄和,则父亲1994年的年龄要用4段线来表示(见下页图)。

父亲在2000年的年龄应是4段线再加6岁,而兄弟二人在2000年的年龄之和是1段线再加2×6=12(岁),它是父亲年龄的一半,也就是2段线再加3岁。由

1段+12岁=2段+3岁, 推知1段是9岁。所以父亲1994年的年龄是9×4=36(岁),他出生于

1994——36=1958(年)。 例7今年父亲的年龄为儿子的年龄的4倍,20年后父亲的年龄为儿子的年龄的2倍。问:父子今年各多少岁?

解法一:假设父亲的年龄一直是儿子年龄的4倍,那么每过一年儿子增加一岁,父亲就要增加4岁。这样,20年后儿子增加20岁,父亲就要增加80岁,比儿子多增加了80-20=60(岁)。 事实上,20年后父亲的年龄为儿子的年龄的2倍,根据刚才的假设,多增加的60岁,正好相当于20年后儿子年龄的(4——2=)2倍,因此,今年儿子的年龄为

(20×4-20)÷(4-2)-20=10(岁),

父亲今年的年龄为10×4=40(岁)。

解法二:如果用1段线表示儿子今年的年龄,那么父亲今年的年龄要用4段线来表示(见下图)。

20年后,父亲的年龄应是4段线再加上20岁,而儿子的年龄应是1段

线再加上20岁,是父亲年龄的一半,也就是2段线再加上10岁。由 1段+20=2段+10,

求得1段是10岁,即儿子今年10岁,从而父亲今年40岁。

例8 今年爷爷78岁,长孙27岁,次孙23岁,三孙16岁。问:几年后爷爷的年龄等于三个孙子年龄之和? 分析:今年三个孙子的年龄和为27+23+16=66(岁),爷爷比三个孙子的年龄和多78——66=12(岁)。每过一年,爷爷增加一岁,而三个孙子的年龄和却要增加1+1+1=3(岁),比爷爷多增加3-1=2(岁)。因而只需求出12里面有几个2即可。 解:[78-(27+23+16)]÷(1+1+1-1)=6(年)。

答:6年后爷爷的年龄等于三个孙子年龄的和。 练习12

1.父亲比儿子大30岁,明年父亲的年龄是儿子年龄的3倍,那么今年儿子几岁?

2.王梅比舅舅小19岁,舅舅的年龄比王梅年龄的3倍多1岁。问:他们二人各几岁?

3.小明今年9岁,父亲39岁,再过多少年父亲的年龄正好是小明年龄的2倍?

4.父亲年龄是女儿的4倍,三年前父女年龄之和是49岁。问:父女两人现在各多少岁?

5.一家三口人,三人年龄之和是74岁,妈妈比爸爸小2岁,妈妈的年龄是儿子年龄的4倍。问:三人各是多少岁?

6.今年老师46岁,学生16岁,几年后老师年龄的2倍与学生年龄的5倍相等?

7.已知祖孙三人,祖父和父亲年龄的差与父亲和孙子年龄的差相同,祖父和孙子年龄之和为82岁,明年祖父的年龄恰好等于孙子年龄的5倍。问:祖孙三人各多少岁?

8.小乐问刘老师今年有多少岁,刘老师说:“当我像你这么大时,你才3岁;当你像我这么大时,我已经42岁了。”你能算出刘老师有多少岁吗?

小学奥数基础教程(四年级)

第13讲 鸡兔同笼问题与假设法 鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。

例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只?

分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。因此只要算出12里面有几个2,就可以求出兔的只数。

解:有兔(44-2×16)÷(4-2)=6(只), 有鸡16-6=10(只)。 答:有6只兔,10只鸡。 当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。因此只要算出20里面有几个2,就可以求出鸡的只数。 有鸡(4×16-44)÷(4-2)=10(只),

有兔16——10=6(只)。 由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。因此这类问题也叫置换问题。

例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。问:大、小和尚各有多少人? 分析与解:本题由中国古算名题“百僧分馍问题”演变而得。如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。

假设100人全是大和尚,那么共需馍300个,比实际多300-140=160

- 15 -

(个)。现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3——1=2(个),因为160÷2=80,故小和尚有80人,大和尚有 100-80=20(人)。

同样,也可以假设100人都是小和尚,同学们不妨自己试试。 在下面的例题中,我们只给出一种假设方法。

例3 彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。问:两种文化用品各买了多少套?

分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。这样,就将买文化用品问题转换成鸡兔同笼问题了。

假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304——280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19——11=8(元),所以 买普通文化用品 24÷8=3(套), 买彩色文化用品 16-3=13(套)。

例4 鸡、兔共100只,鸡脚比兔脚多20只。问:鸡、兔各多少只? 分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200——20=180(只)。

现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100——30=70(只)。 解:有兔(2×100——20)÷(2+4)=30(只),

有鸡100——30=70(只)。 答:有鸡70只,兔30只。 例5 现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。问:大、小瓶各有多少个?

小学数学奥数基础教程(四年级)目30讲全

例5从1~9这九个自然数中选出八个填入下式的八个○内,使得算式的结果尽可能大:[○÷○×(○+○)]-[○×○+○-○]。分析与解:为使算式的结果尽可能大,应当使前一个中括号内的结果尽量大,后一个中括号内的结果尽量小。为叙述方便,将原式改写为:[A÷B×(C+D)]-[E×F+G-H]。通过分析,A,C,D,H应尽可能大,且A应最大,C,D次
推荐度:
点击下载文档文档为doc格式
6uaka1m06r9gaib4884o
领取福利

微信扫码领取福利

微信扫码分享