【压轴卷】高中必修五数学上期中一模试卷及答案(3)
一、选择题
1.已知等差数列?an?中,a1010?3,S2017?2017,则S2018?( ) A.2018
B.?2018
C.?4036
D.4036
n?12.已知等比数列?an?的前n项和为Sn,且满足2Sn?2??,则?的值是( )
A.4 B.2 C.?2 D.?4
3.已知数列?an?的首项a1?1,数列?bn?为等比数列,且bn?an?1.若b10b11?2,则anD.212
a21?( )
A.29
B.210
C.211
4.已知数列?an?的通项公式为an?log2Sn??5成立的自然数n( )
n?1n?N*?,设其前n项和为Sn,则使?n?2B.有最大值63 D.有最大值31
A.有最小值63 C.有最小值31
5.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15?的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60?和30°,第一排和最后一排的距离为102米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)
A.
33 23B.
53 23C.
73 23D.
83 236.若关于x的不等式x2?ax?2?0在区间?1,5?上有解,则a的取值范围是( ) A.???23?,??? ?5?B.???23?,1? 5??C.?1,???
D.???,??23? 5??7.当x??1,2?时,不等式x2?mx?2?0恒成立,则m的取值范围是( ) A.??3,???
B.?22,??
??C.??3,???
D.???22,??
?8.已知:x?0,y?0,且范围是( ) A.??4,2?
21??1,若x?2y?m2?2m恒成立,则实数m的取值xyC.??2,4?B.???,?4?U?2,??? D.???,?2???4,???
9.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度从这一列的第一排和最后一排测得旗杆顶部的仰角分别为
的看台的某一列的正前方,和
,第一排和最后一排
的距离为56米(如图所示),旗杆底部与第一排在同一个水平面上.若国歌长度约为秒,要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为()(米 /秒)
A.
1 10B.
3 10C.
1 2D.
7 1010.已知正数x、y满足x?y?1,则A.2
B.
14?的最小值为( ) x1?yC.
9 214 3D.5
11.若a,b,c,d∈R,则下列说法正确的是( ) A.若a>b,c>d,则ac>bd C.若a>b>0,c>d>0,则12.若x?0,y?0,且( ) A.(?8,1)
C.(??,?1)?(8,??)
B.(??,?8)?(1,??) D.(?1,8)
B.若a>b,c>d,则a+c>b+d D.若a>b,c>d,则a﹣c>b﹣d
cd? ab21??1,x?2y?m2?7m恒成立,则实数m的取值范围是xy二、填空题
?x?y?3?0?13.若直线y?2x上存在点(x,y)满足约束条件?x?2y?3?0,则实数m的取值范围为
?x?m?_______.
14.已知的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.
15.等差数列?an?中,a1?1,a3?a5?14,其前n项和Sn?100,则n=__ 16.已知各项为正数的等比数列?an?满足a7?a6?2a5,若存在两项am,an使得
am?an?22a1,则
14?的最小值为__________. mn17.已知等比数列{an}的首项为2,公比为2,则18.设a?b?2,b?0,则当a?_____时,
aan?1aa1?aa2?L?aan?_______________.
1|a|?取得最小值. 2|a|b19.设?an?是等差数列,且a1?3,a2?a5?36,则?an?的通项公式为__________. 20.设等差数列{an}的前n项和为Sn,若S3?9,S6?36,则a7?a8?a9等于______.
三、解答题
21.在?ABC中,内角A,B,C所对的边分别为a,b,c,已知
4sin2A?B?4sinAsinB?2?2 2(1)求角C的大小;
(2)已知b?4,?ABC的面积为6,求边长c的值.
22.已知数列?an?的前n项和为Sn,且1,an,Sn成等差数列. (1)求数列?an?的通项公式;
(2)若数列?bn?满足anbn?1?2nan,求数列?bn?的前n项和Tn. 23.设?ABC的内角A,B,C所对的边分别为a,b,c,已知
acosB?(2c?b)cosA.
(Ⅰ)求角A的大小;
(Ⅱ)若a?4,BC边上的中线AM?22,求?ABC的面积.
24.各项均为整数的等差数列{an},其前n项和为Sn,a1??1,a2,a3,S4?1成等比数列.
(1)求{an}的通项公式;
n(2)求数列{(?1)?an}的前2n项和T2n.
25.已知?an?为等差数列,前n项和为Snn?N?*?,?b?是首项为2的等比数列,且公
n比大于0,b2?b3?12,b3?a4?2a1,S11?11b4. (1)求?an?和?bn?的通项公式; (2)求数列?a2n?b2n?1?的前n项和.
vvvva?2cosx,3sin2x,b??cosx,1?,x?R. 26.已知函数f?x??a?b,其中
??(1)求函数y?f?x?的单调递增区间;
(2)在?ABC中,角A,B,C所对的边分别为a,b,c,f?A??2,a?7,且b?2c,求
?ABC的面积.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【解析】
分析:由题意首先求得a1009?1,然后结合等差数列前n项和公式求解前n项和即可求得最终结果.
详解:由等差数列前n项和公式结合等差数列的性质可得:
S2017?a1?a20172a?2017?1009?2017?2017a1009?2017, 22则a1009?1,据此可得:
a1?a2018?2018?1009?a1009?a1010??1009?4?4036. 2本题选择D选项. S2017?点睛:本题主要考查等差数列的性质,等差数列的前n项和公式等知识,意在考查学生的转化能力和计算求解能力.
2.C
解析:C 【解析】 【分析】
利用Sn先求出an,然后计算出结果. 【详解】
根据题意,当n?1时,2S1?2a1?4??,?a1?n?1故当n?2时,an?Sn?Sn?1?2,
4??, 2Q数列?an?是等比数列,
则a1?1,故解得???2, 故选C.
4???1, 2【点睛】
本题主要考查了等比数列前n项和Sn的表达形式,只要求出数列中的项即可得到结果,较为基础.
3.B
解析:B 【解析】 【分析】
由已知条件推导出an=b1b2…bn-1,由此利用b10b11=2,根据等比数列的性质能求出a21. 【详解】
数列{an}的首项a1=1,数列{bn}为等比数列,且bn?∴b1=an?1, anaa2a?a2,b2=3,?a3?b1b2,b3=4,?a4?b1b2b3, a1a2a3Qb10b11?2,?a21?b1b2?b20?(b1b20)?(b2b19)???(b10b11)?210 . …an?b1b2?bn?1,故选B. 【点睛】
本题考查数列的第21项的求法,是中档题,解题时要认真审题,注意递公式和等比数列的性质的合理运用.
4.A
解析:A 【解析】 【分析】
利用对数运算,求得Sn,由此解不等式Sn??5,求得n的最小值. 【详解】 ∵an?log2n?1n?N*?, ?n?223n?1?log2???log234n?2∴Sn?a1?a2?a3???an?log2n?1?2?23?log2??????log, 2?n?2?n?2?34又因为Sn??5?log2121???n?62, 32n?232故使Sn??5成立的正整数n有最小值:63. 故选:A. 【点睛】
本小题主要考查对数运算和数列求和,属于基础题.
5.B
[压轴卷]高中必修五数学上期中一模试卷及答案(3)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)