好文档 - 专业文书写作范文服务资料分享网站

先进制造技术课程的论文【最新3篇】

分享 时间: 加入收藏 我要投稿 点赞

当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。下面是范文网的小编为您带来的先进制造技术课程的论文【最新3篇】,您的肯定与分享是对小编最大的鼓励。

篇一:先进制造技术课程的论文 篇一

[摘要]随着先进复合材料技术和工艺技术的迅速发展,复合材料在飞机上的应用比例稳步增长,应用部位从非承力、次承力结构向主承力和核心部件扩展,本文总结了近年来推动复合材料发展的先进材料技术和制造工艺技术。

1.引言

航空复合材料是一种由高强度、高刚度增强材料构成的新型材料,具有良好的抗疲劳性、抗腐蚀性等一系列优点。复合材料是综合权衡飞机减重、性能、成本三方面因素的理想材料,在飞机上大量应用可以明显减轻飞机的结构重量,提高飞机的性能。

2.航空先进复合材料发展分析

复合材料原材料方面,航空用各种树脂基复合材料水平有大幅度提高。在碳纤维材料方面,大丝束12k、24k已逐渐代替3k及6k,高强度的T700S及T800S已开始广泛生产。以977-3/IM7和3900/T800S为代表的环氧树脂复合材料已发展到第二代,其CAI达到245~315MPa,堪称首屈一指。以5250-4/IM7为代表的双马基高温复合材料已发展到第二代,工作温度达到177℃,广泛用于飞机高温部位。

聚酰亚胺复合材料广泛用于发动机高温部位,缺点是含二氨基二苯甲烷(MDA)有毒,美国研究出无MDA的预浸带可用于发动机及飞机;因钛合金稀缺,聚酰亚胺预浸带正研究用来代替500℃以下的钛合金。美国Amber公司开发的C740阻燃氰酸乙酯树脂与碳纤维组成的材料固化后工作温度可达344℃,可用作无人机S-100的尾喷管及发动机。

3.航空复合材料先进工艺技术发展分析

航空复合材料先进工艺技术方面,数字化技术、自动化技术、低成本技术以及先进工艺装备的应用和发展,推动了复合材料工艺技术从以手工制造、模拟量传递为特征的传统≮≯技术迅速转变为以自动化制造、数字量传递为特征的先进技术,目前在航空复合材料中得到广泛认可和推广应用的先进制造技术如下:

3.1数字化技术广泛应用

采用数字量形式对产品进行全面描述和数据传递,实现了设计与制造之间的无缝对接。目前复合材料构件数字化制造主要体现在预浸料自动下料、激光铺层定位和纤维自动铺放等方面。

3.2自动化技术迅猛发展

自动铺叠可成型超大尺寸和形状复杂的复合材料制件,而且质量稳定,工件净近成形,加工切削加工及原材料耗费减少。自动铺带及丝束铺放的材料利用率达到80%~97%,而手工铺层的材料利用率仅为40%,先进铺带技术可降低制造成本30%~50%。据统计,2001年前全球只有不足100台自动化复合材料铺层机,到2007年全球拥有自动化复合材料结构制造用机器人设备250台。2007年大型民机复合材料结构只有43%是用自动化制造的,预计10年内将达到64%。

复合材料自动化技术包括自动铺带技术(ATL)和自动铺丝(AFP)技术。目前最先进的第五代铺带机是带有双超声切割刀和缝隙光学探测器的十轴铺带机,铺带宽度最大可达到300mm,铺带速度达(1.3~20.4)kg/h,生产效率可达到手工铺叠的数十倍。所有波音787翼面及翼盒构件均采用自动铺带技术制造。

针对复杂双曲率型面,由Hercules率先开发了自动丝束铺放(ATP)。其结合了自动铺带和纤维缠绕技术的优点,铺束头把缠绕技术所用的不同预浸纱束独立输送和铺带技术所用的压实、切割、重送功能结合在一起,由铺束头将数根预浸纱束在压辊下集束成为一条宽度可变的预浸带,然后铺放在芯模表面,铺放过程中加热软化预浸纱束并压实定型。目前最新的Viper6000系统可以铺放并控制32个纤维束,每束宽3.2mm,铺层带宽达到10.2cm,铺丝速度可达6.8~11.3kg/h,最高可达23kg/h,丝束的铺放精度达到±1.3mm。

除广泛采用自动化铺层设备外,还广泛采用了大型自动化高速喷水切割机、超声切割机、数控自动化钻铆机、大型剪切螺栓紧固机等。

3.3液态成型、非热压罐固化等多种工艺日趋成熟

VARTM技术是目前液态成形技术中发展得较为完善的一种,在CRJ700/900支线飞机、A380、787机身后压力隔框及A400M货舱门上广泛应用了VAP技术,纤维体积密度达到65%,孔隙率小于0.2%。非热压罐固化虽会使纤维体积含量减少,但其影响甚小,如在VARTM技术中,单向带及织物的纤维体积含量已分别达到60%和56%,而热压罐固化所能达到的相应值也仅为62%和58%。

较之VARTM和RTM更接近传统方法的是采用为非热压罐固化开发的专用预浸料,然后在固化炉中固化。目前,先进复合材料公司的首个热压罐外固化复合材料MTM44-1已取得空客认可用做结构件。

3.4先进无损检测技术的应用

复合材料制件无损检测设备主要需要配置大型超声C扫描设备和X光无损检测设备。此外激光剪切摄影及激光超声检测也是主要发展方向。

在超声检验技术上最重要的进展之一是相控阵检验的开发。相控阵超声检验与传统超声检验相比,改进了探测的概率,并明显加快了检验速度。

波音及空军实验室等采用了一批先进的无损检测技术。波音公司的移动式自动扫描机(MAUS)C扫描系统,检测速度9.3m2/h;空军实验室的激光超声检验速度是水浸超声探伤的10倍。此外还有电子剪切成像、相控阵超声等多种方法。

3.5大型工艺装备的建立

波音787的机翼固化用热压罐8m×40m,机身固化热压罐9m×23m。A380固化用热压罐9m×42m,为世界之最。此外还有Viper6000自动铺放机、大型喷水切割机、隔膜成形机以及自动钻铆机等也是重要的大型设备。

大型构件的模具重量太大,重达45360kg,采用复合材料作模具,使波音787的后机身模具重量降低60%。目前还在开发气相沉积薄壳镍基合金模具,低温固化复合材料制的模具、碳泡沫模具以及納米技术改性模具等。

3.6手工铺层在次承力结构制造中仍不可替代

手工铺层在定货量小,质量要求高的场合仍广泛应用。它的优点是可使蒙皮厚度有大的变化,进行局部加强。目前手工铺层使用了许多专用设备来控制和保证铺层的质量,如复合材料预浸料自动剪裁下料系统、铺层激光定位系统等,从而将依赖于样板的制造过程转变为可根据复合材料设计软件产生的数据文件进行全面运作的制造过程。在某些形状复杂的次承力构件制造中,手工铺层仍是不可取代的。手工铺层的缺点是要求铺层人员有很高的技艺和施工经验,手工铺贴费工费时,效率低、成本高(占总成本的1/4),难以适应大批量生产和大型复杂复合材料制件的生产要求。

4.结论

先进复合材料在飞机上的应用和发展很大程度上取决于复合材料技术和工艺制造技术的快速进步。在目前及未来一段时期内,在适当保留传统手工制造的基础上,耐高温、耐腐蚀、高强度等高性能复合材料及数字化、自动化、低成本制造技术是航空复合材料发展的主要方向。

参考文献

[1] 益小苏。先进复合材料技术研究与发展[M].国防工业出版社,2024,(5).

篇二:先进制造技术课程的论文 篇二

先进制造技术内涵广泛、学科交叉,并且不断地发展与完备,在激烈的国际市场竞争中,制造业要求生存和发展,必须掌握并科学运用最先进的制造技术。先进制造技术也是改造传统产业的有力武器。先进制造技术的发展与产业化,将对国民经济的发展产生越来越大的影响。本文主要分析了当今我国先进制造技术的特点及发展趋势,介绍了当今制造技术面临的问题,论述了先进制造的前沿科学,并展望了先进制造技术的发展前景。制造业在国家企业生产力构成中占很大比重,因此若想增强综合国力,大力发展制造技术是必由之路。

关键词:先进制造 特点 发展现状 趋势

0引言:

先进制造技术(Advanced Manufacturing Technology,简称为AMT)是指微电子技术、自动化技术、信息技术等先进技术给传统制造技术带来的种种变化与新型系统[1]。具体地说,就是指集机械工程技术、电子技术、自动化技术、信息技术等多种技术为一体所产生的技术、设备和系统的总称。主要包括:计算机辅助设计、计算机辅助制造、集成制造系统等。AMT是制造业企业取得竞争优势的必要条件之一,但并非充分条件,其优势还有赖于能充分发挥技术威力的组织管理,有赖于技术、管理和人力资源的有机协调和融合。

1先进制造技术的特点:

1.1实用性: 首先先进制造技术应该能够为我们所用,是实用的,而不是观念上得东西,能够真正为人类造福的。其是一项面向工业应用并且兼备有实用性的新技术, 它的发展是针对某一具体制造业的需求而发展起来的先进的、适用的制造技术 , 它有明确的需求导向的特征, 其应用特别注意产品最好的实际效果 , 以提高制造业的综合经济效益和社会效益为最终目的。

1.2先进性: 其次,从他的命名来看,他显然应当具有先进性,这符合社会的发展,能够带动社会的生产力的前进才是他的关键所在。它从传统的工艺发展而来 , 既保留了过去制造技术中的有效要素, 又吸收了各种高新技术的最新成果 , 并与新技术实现了局部或系统集成,先进制造技术的核心是优质、高效、低耗、清洁、灵活的工艺, 这些工艺也必须是经过优化的先进工艺 。

1.3 广泛性:再者,他应当具有广泛的应用,而不是单单用于某个狭窄的方面或者是个狭窄的技术。他应当能够为现在生产制造的绝大部分所使用,这样才能体现先进制造技术的存在价值,才能激发科学研究者去研究发展它的决心。 先进制造技术是由计算机技术、设计技术、自动化技术、系统管理技术组成, 渗透到产品的设计、制造、生产组织、市场营销及回收再生等所有领域及其全过程。

1.4动态特性: 而且先进制造技术是一类技术,而不是单指某项技术,拥有一定的目标。是一个技术群, 并且是针对一定的应用目标 , 不断地吸收各种高新技术逐渐形成的新技术 , 因此这个技术群是一个动态技术 , 不同时期有不同的特点 , 通过不同形式发展不同国家和地区的制造技术。

1.5集成性: 先进制造技术由于专业、学科间的不断渗透、交叉、融合 , 界限逐渐淡化甚至消失 , 技术趋于系统化 , 已发展成为集机械、电子、信息、材料和管理技术于一体的新兴交叉学科 。

1.6效益、成本和质量的统一性: 先进制造技术能对市场变化作出敏捷的反应, 提出提高产品劳动生产率的有效途径 , 并且将其转变为以时间为核心的效率、成本、质量的有机结合, 使其达到高度的统一 ,最终在市场竞争中立于不败之地[2]。

2先进制造技术目前的发展及几种常见的技术介绍:

我国现阶段正大力发展先进制造技术,但是与国外顶尖技术还是有一定的差距,把我国的制造技术提高上去才能真正增强国家的综合实力,才能真正提高国家的科技竞争力,所以应当大力发展先进制造技术。

2.1主要的核心技术及发展情况:

2.1.1快速成形, 英文是Rapid Prototyping, 是当代先进制造技术的一种。 快速成形技术是计算机辅助设计及制造技术、逆向工程技术、分层制造技术(SFF)、材料去除成形(MPR)材料增加成形(MAP)技术以及它们的集成。 通俗一点说, 快速成形就是利用在三维造型软件中已经设计的数字三维模型, 通过快速成型设备(快速成形机), 制造实体的三维模型的技术。

快速成形技术有以下特点:

(1)制造原型所用的材料不限,各种金属和非金属材料均可使用

(2) 原型的复制性、互换性高

(3) 制造工艺与制造原型的几何形状无关,在加工复杂曲面时更显优越 [3]

(4) 加工周期短,成本低,成本与产品复杂程度无关,一般与传统加工模型的工艺相比, 快速成形在制造费用上可以降低80%,加工周期可以节约70%以上

(5) 高度技术集成,可实现了设计制造一体化

曾经和目前仍然为主流的快速成形技术有以下几种:

2.1.2立体光刻技术 (SL/SLA)

SLA的工作原理是以液态光敏树脂 (例如一种特殊的环氧树脂)为造型材料,采用紫外激光器为能源:一种是氦一福激光器 (波长 325nm,功率15~50MW),另一种是氨离子激光器(波长351~365nm,功率 100~500MW ),激光束光斑大小为0.05~3mm。由CAD设计出三维模型后将模型进行水平切片,分成为成千上万个薄层,生成分层工艺信息,按计算机所确定的轨迹,控制激光束的扫描轨迹,使被扫描区域内的液态光敏树脂固化,形成一层薄固体截面后,升降机构带动工作台下降一层高度,其上复盖另一层液态光敏树脂,接着进行第二层激光扫描固化,新固化的一层牢固地粘在前一层上,就这样逐层叠加直到完成整个模型的制作。一般每个薄层的厚度0.07~0.4mm,模型从树脂中取出后,进行最终硬化处理加以打光、电镀、喷漆或着色等即可。

发展趋势:稳步发展。 SL/SLA技术的缺点在于材料成本和设备维护成本十分高昂。因为紫外激光器的使用寿命只能维持在1年左右, 同时作为成形材料的光敏树脂也需要每年更换, 仅此两项便需要每年50万人民币以上的维护成本。 此外, SL/SLA快速成形设备结构复杂, 零件众多, 日常的维护保养也十分不易。 但是, 由于SL/SLA技术的成形精度非常高, 可以制造十分细小的模型或表面特征, 这一项优势似的SL/SLA技术仍然具有十分广阔的应用前景。

2.1.3 薄材叠层成形技术 (LOM)

薄材叠层成形技术是通过

对原料纸进行激光切割与粘合的方式来形成零件的。其工艺是先将单面涂有热熔胶的纸通过加热辊加压粘结在一起,此时位于其上方的激光器按照分层CAD模型所获得的数据,将一层纸切割成所制零件的内外轮廓,然后新的一层纸再叠加在上面,通过热压装置,将下面已经切割的层粘合在一起,激光再次进行切割。切割时工作台连续下降,切割掉的纸片仍留在原处,起支撑和固化作用,纸片的一般厚度为0.07~0.1mm。该方法特点是成形速率高,成本低廉。

发展趋势:已经淘汰。

LOM技术是快速成形技术发展过程中曾今为了寻找成本相对低廉, 精度相对合理的解决方案的一种尝试性探索。 客观而言, LOM设备的成形精度适中, 可以制造一些具有表面纹路的模型, 同时, 成形速度也相对较快。 但是, 由于LOM技术的材料利用率很低(10%-20%), 使得实际的材料成本并不便宜。 此外, LOM设备的稳定性和安全性也存在严重隐患,在实际运行过程中, 纸质、木质和PVC材料在激光照射极易着火, 引起事故。 因此, 目前LOM技术在全世界范围内已经几乎停止使用。

2.1.4选区激光粉末烧结技术 (SLS)

选择性激光烧结 (SLS)的成形方法是。在层面制造与逐层堆积的过程中,用激光束有选择地将可熔化粘结的金属粉末或非金属粉末 (如石蜡、塑料、树脂沙、尼龙等)一层层地扫描加热,使其达到烧结温度并烧结成形;当一层烧结完后,工作台降下一层的高度,铺下一层的粉末,再进行第二层的扫描,新烧结的一层牢固地粘结在前一层上,如此重复,最后烧结出与CAD模型对应的三维实体。选择性激光烧结 (SLS)突出的优点在于它是以粉末作为成形材料,所使用的成形材料十分广泛,从理论上来说,任何被激光加热后能够在粉粒间形成原子间连接的粉末材料都可以作为SLS的成形材料。

发展趋势:停滞不前。

2.1.5熔融沉积成形技术 (MEM)

MEM的基本原理是:加热喷头在计算机的控制下,根据截面轮廓信息作X--Y平面运动和高度Z方向的运动,丝材 (如塑料丝、石腊质丝等)由供丝机构送至喷头,在喷头中加热、熔化,然后选择性地涂覆在工作台上,快速冷却后形成一层截面轮廓,层层叠加最终成为快速原型。用此法可以制作精密铸造用蜡模、铸造用母模等。

发展趋势:快速发展。

MEM是在相对近期发展处的快速成形技术, 其有点在于安全性高, 设备稳定性高, 成形精度高而运行成本低。 因为含有特殊配方的ABS工程塑料本身的物理和化学性质, 使得MEM技术制作的模型具有很好的强度和韧度, 可以经受锻造、钻孔、打磨等高强度的测试。 加之ABS丝材成本相对低廉, 设备设计简洁, 维护方便等优势, 使得MEM技术目前后来居上, 成本工人的应用最广泛的快速成形技术。

篇三:先进制造技术课程的论文 篇三

摘要:文章以探讨机械模具数控加工制造技术角度出发,研究如何在充分有效地利用该项技术的情况下保证产品质量、提高工作效率,并为此提出合理建议与对策。

关键词:机械化;模具;加工制造

1数控加工制造技术的简述

1.1数控机床工艺

数控机床工艺指包含一系列在数控机床加工的零件与工序内容。数控机床工艺分支众多,可以按照零件加工方式与部位的不同进行划分,也可以按照粗加工与精加工的方式进行概述,甚至能按照所需刀具进行分类。

1.2数控编程技术

数控编程技术指各类机床、车床、车削、铣削等加工过程中涉及到的编程应用与分析。随着我国制造行业的日益壮大,自动编程正在逐渐取代传统手工编程,但不代表学员可以忽视交互式图形编程技术打下的基础。

2机械模具数控加工制造技术的意义

2.1对于机械模具数控加工制造技术所应用的加工过程

传统手工模式除了需要对工件刀具进行装卸以外还需对编码进行手动计算、输入、追踪,现今自动编码被大规模应用,常规、机械的程序输入可以采用自动代替手工,使得装备时间与无效工作大幅度减少,同时避免了人工操作时可能造成的误差与疏忽。由于自动化对加工过程中刀具装卸等环节进行的优化,人工辅助时间减少,主轴转速得到增加,进给量范围也随之扩大。由于数控机床本身所具有的刚性特质,强力切削效果得到加强,大大减少机械模具所需的加工周期。

2.2保证零件加工精度,提高产品质量

由于数控机床在机械模具加工制造过程中的数控化,大部分作业由数码编程取代人工操作,因此相对而言避免了人工操作存在的误差。但不代表自动化可以完全取代人工操作,由于机械模具不会重复开模的特殊性,为了保障零件精度以及产品质量,避免无效投入,指令代码的设置与编辑程序必须由人工进行反复确认,甚至需要在加工前需要进行人工活动来处理一些零件结构。在应用数控机床加工过程中,有效对机械模具数控加工制造技术进行提升、改进,同时结合人工与数控化,能使产品价值获得极大提升。在设计模具的前提下,利用数控数据技术对图纸进行反复测绘与计算,也应该合理应用新一代闭环补偿技术使得机械模具在加工过程中更加精准。

3机械模具数控加工制造技术的应用

3.1数控车削加工技术的应用

车床按照结构、布局、工艺等划分分类各有不同,但主要工具是车刀。由于机械模具的杠杆类零件大部分属于金属物件,因此企业使用电脑编程对车床进行导柱加工等常规操作。在最初的数控车削加工技术的应用中,该项技术的局限性也十分明显。由于车床本身耐热性变形导致的热误差和几何误差使得加工模具精确度大大降低,经过数控技术改进后,现代化高智能计算机通过建立数学模型进行误差补偿,不仅提高了受到硬件设施制约的精确度,还减少了人工作业过程中造成的加工失误。

3.2数控铣削加工技术的应用

数控铣削加工技术运用范围较广,由于现今制造业所需的零件越来越复杂,拥有多轴数控铣床的加工技术被广泛运用。数控铣床对外形较复杂、多槽等特性零件进行金属冷加工时,可有效使刀具处于高速旋转的状态下作业。因此数控铣削加工技术所带来的便利使数控铣床对金属进行冷加工时能更精准、更完善地完成高水平加工处理。

3.3数控电火花加工技术的应用

数控电火花加工技术作为机械模具加工制造技术的主导技术,其原理主要是利用脉冲电源与工具电极及绝缘垫的正负电荷导向性,对工件的型孔、型腔进行加工。电火花加工技术包含成形、切割、磨削等方面,作为机械模具加工技术的主导,电火花加工技术经济成本相对较低,且稳定性能得到保障。如今的电火花技术发展到数控阶段,使得工作人员能对电解质、对电参数等得到一个相对而言较为精准的控制程度。而工具电极形状与运动受到数控的调节,因而各种复杂的型面均能用电火花技术进行加工。

4结语

为了满足越来越多的制造业需求,机械模具数控加工制造技术有必要进行提升精度与完善体系,新一代技术的应用与推广将进一步提高我国制造业产品质量、工作效率,从而对促使我国行业发展、经济繁荣具有积极意义。

参考文献

[1]王锐。探讨机械模具数控加工制造技术研究[J].科技风,2024,(8):30-41.

[2]李伟。机械模具数控加工制造技术研究[J].南方农机,2024,(4):28-31.

221381
领取福利

微信扫码领取福利

微信扫码分享