好文档 - 专业文书写作范文服务资料分享网站

八年级数学的教案(优秀6篇)

分享 时间: 加入收藏 我要投稿 点赞

作为一位不辞辛劳的人民教师,总归要编写教案,借助教案可以让教学工作更科学化。那么写教案需要注意哪些问题呢?下面是小编精心为大家整理的八年级数学的教案(优秀6篇),在大家参照的同时,也可以分享一下白话文给您最好的朋友。

篇一:八年级数学教案 篇一

【教学目标】

一、教学知识点

1.命题的组成。

2.命题真假的判断。

二、能力训练要求:

1.使学生能够分清命题的条件和结论,能判断命题的真假

2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法

三、情感与价值观要求:

1.通过反例说明假命题,使学生认识到任何事情都是正反两方面对立统一

2.帮助学生了解数学发展史,拓展视野,激发学习兴趣

3.通过对《原本》介绍,使学生感受数学发展史和人类文明价值

【教学重点】准确的找出命题的条件和结论

【教学难点】理解判断一个真命题需要证明

【教学方】探讨、合作交流

【教具准备】投影片

【教学过程】

一、情景创设、引入新课

师:如果这个星期不下雨,我们就去郊游,这是命题吗?分析这句话,这个周日,我们郊游一定能成行吗?为什么?

新课:

(1)观察下列命题,你能发现这些命题有什么共同结构特征?与同伴交流。

1.如果两个三角形的三条边对应相等,那么这两个三角形全等。

2.如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。

3.如果一个三角形是等腰三角形,那么这个三角形的两个底角相等。

4.如果一个四边形的对角线相等,那么这个四边形是矩形。

5.如果一个四边形的两条对角线相互垂直,那么这个四边形是菱形。

师:由此可见,每个命题都是由条件和结论两部分组成的,条件是已知的事项,结论是由已知事项推出的事项。一般地,命题都可以写成“如果……那么……”的形式,其中“如果”引出部分是条件,“那么”引出部分是结论。

二、例题讲解:

例1:师:下列命题的条件是什么?结论是什么?

1.如果两个角相等,那么他们是对顶角;

2.如果a>b,b>c,那么a=c;

3.两角和其中一角的对边对应相等的两个三角形全等;

4.菱形的四条边都相等;

5.全等三角形的面积相等。

例题教学建议:1:其中(1)、(2)请学生直接回答,(3)、(4)、(5)请学生分成小组交流然后回答。

2:有的命题的描述没有用“如果……那么……”的形式,在分析时可以扩展成这种形式,以分清条件和结论。

例2:上述命题哪些是正确的,哪些是不正确的?你是怎么知道它是不正确的?与同伴交流。

师:正确的命题叫真命题,不正确的命题叫假命题。要说明一个命题是假命题,通常可以举一个例子,使之具备命题的条件,却不具备命题的结论,即反例。

教学建议:对于反例的要求可以采取启发式层层递进方式给出,即:说明命题错误可以举例→综合命题(1)、(2)的两例,两例条件具备→例子结论不吻合→给出如何举反例要求。

三、思维拓展:

拓展1.师:如何证实一个命题是真命题呢?请同学们分小组交流一下。

教学建议:不急于解决学生怎么证实真命题的问题,可按以下程序设计教学过程

(1)首先给学生介绍欧几里得的《原本》

(2)引出概念:公理、定理,证明

(3)启发学生,现在如何证实一个命题的正确性

(4)给出本套教材所选用如下6个命题作为公理

(5)等式性质、不等式有关性质,等量代换也看作定理。

拓展2.师:任何公理、定理是命题吗?是真命题吗?为什么?

建议:在学生回答后归纳总结:公理是经过长期实践验证的,不需要再进行推理论证都承认的真命题。定理是经过推理论证的真命题。

练习书p197习题6.31

四、问题式总结

师:经过本节课我们在一起共同探讨交流,你了解了有关命题的哪些知识?

建议:可对学生进行提示性引导,如:命题的构成特点、命题是否都正确、如何判断一个命题是假命题、如何证实一个命题是真命题。

作业:书p197习题6.32、3

板书设计:

定义与命题

课时2

条件

1.命题的结构特征

结论

1.假命题——可以举反例

2.命题真假的判别

2.真命题——需要证明 学生活动一——

探索命题的结构特征

学生观察、分组讨论,得出结论:

(1)这五个命题都是用“如果……那么……”形式叙述的

(2)这五个命题都是由已知得到结论

(3)这五个命题都有条件和结论

学生活动二——

探索命题的条件和结论

生:命题1、2如果部分是条件,那么部分是结论;命题3如果两个三角形两角和其中一角对边对应相等是条件,那么这两个三角形全等是结论;命题4如果是菱形是条件,那么四条边相等是结论;命题5如果两三角形全等是条件,那么面积相等是结论。

学生活动三

探索命题的真假——如何判断假命题

生:可以举一个例子,说明命题1是不正确的,如图:

已知:∠AOB,∠1=∠2,∠1,∠2不是对顶角

生:命题2,若a=10,b=8,c=5,此时a>b,b>c,但a≠c

生:由此说明:命题1、2是不正确的

生:命题3、4、5是正确的

学生活动四

探索命题的真假——如何证实一个命题是真命题

学生交流:

生:用我们以前学过的观察、实验、验证特例等方法

生:这些方法往往并不可靠

生:能够根据已知道的真命题证实呢?

生:那已经知道的真命题又是如何证实的?

生:那可怎么办呢?

生:可通过证明的方法

学生分小组讨论得出结论

生:命题的结构特征:条件和结论

生:命题有真假之分

生:可以通过举反例的方法判断假命题

生:可通过证明的方法证实真命题

篇二:八年级数学教案 篇二

教学目标

①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。

②理解整式除法的算理,发展有条理的思考及表达能力。

教学重点与难点

重点:整式除法的运算法则及其运用。

难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。

教学准备

卡片及多媒体课件。

教学设计

情境引入

教科书第161页问题:木星的质量约为1。90×1024吨,地球的质量约为5。98×1021吨,你知道木星的质量约为地球质量的多少倍吗?

重点研究算式(1。90×1024)÷(5。98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。

注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。

探究新知

(1)计算(1。90×1024)÷(5。98×1021),说说你计算的根据是什么?

(2)你能利用(1)中的方法计算下列各式吗?

8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

(3)你能根据(2)说说单项式除以单项式的运算法则吗?

注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。

单项式的除法法则的推导,应按从具体到一般的步骤进行。探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。重视算理算法的渗透是新课标所强调的。

归纳法则

单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

注:通过总结法则,培养学生的概括能力,养成用数学语言表达自己想法的数学学习习惯。

应用新知

例2计算:

(1)28x4y2÷7x3y;

(2)—5a5b3c÷15a4b。

首先指明28x4y2与7x3y分别是被除式与除式,在这儿省去了括号。对本例可以采用学生口述,教师板书的形式完成。口述和板书都应注意展示法则的应用,计算过程要详尽,使学生尽快熟悉法则。

注:单项式除以单项式,既要对系数进行运算,又要对相同字母进行指数运算,同时对只在一个单项式里含有的幂要加以注意,这些对刚刚接触整式除法的学生来讲,难免会出现照看不全的情况,所以更应督促学生细心解答问题。

巩固新知教科书第162页练习1及练习2。

学生自己尝试完成计算题,同桌交流。

注:在独立解题和同伴的相互交流过程中让学生自己去体会法则、掌握法则,印象更为深刻,也有助于培养学生良好的思维习惯和主动参与学习的习惯。

作业

1。必做题:教科书第164页习题15。3第1题;第2题。

2。选做题:教科书第164页习题15。3第8题

篇三:八年级数学教案 篇三

教学目标:

(1)理解通分的意义,理解最简公分母的意义;

(2)掌握分式的通分法则,能熟练掌握通分运算。

教学重点:分式通分的理解和掌握。

教学难点:分式通分中最简公分母的确定。

教学工具:投影仪

教学方法:启发式、讨论式

教学过程:

(一)引入

(1)如何计算:

由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。

(2)如何计算:

(3)何计算:

引导学生思考,猜想如何求解?

(二)新课

1、类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

注意:通分保证

(1)各分式与原分式相等;

(2)各分式分母相等。

2、通分的依据:分式的基本性质。

3、通分的关键:确定几个分式的最简公分母。

通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母。

根据分式通分和最简公分母的定义,将分式通分:

最简公分母为:

然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为通分如下:xxx

通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。

例1 通分:xxx

分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。

解:∵ 最简公分母是12xy2,

小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数。

解:∵最简公分母是10a2b2c2,

由学生归纳最简公分母的思路。

分式通分中求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的`。取这些因式的积就是最简公分母。

篇四:八年级的数学教案 篇四

数据的波动

教学目标:

1、经历数据离散程度的探索过程

2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。

教学重点:会计算某些数据的极差、标准差和方差。

教学难点:理解数据离散程度与三个差之间的关系。

教学准备:计算器,投影片等

教学过程:

一、创设情境

1、投影课本P138引例。

(通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的平均质量,同时让学生初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)

2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。

二、活动与探究

如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)

问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?

2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。

3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?

(在上面的情境中,学生很容易比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致学生思想认识上的矛盾,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。

三、讲解概念:

方差:各个数据与平均数之差的平方的平均数,记作s2

设有一组数据:_1, _2, _3,,_n,其平均数为

则s2= ,

而s= 称为该数据的标准差(既方差的算术平方根)

从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。

四、做一做

你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?

(通过对此问题的解决,使学生回顾了用计算器求平均数的步骤,并自由探索求方差的详细步骤)

五、巩固练习:课本第172页随堂练习

六、课堂小结:

1、怎样刻画一组数据的离散程度?

2、怎样求方差和标准差?

七、布置作业:习题5.5第1、2题。

篇五:八年级数学教案 篇五

教学任务分析

教学目标

知识技能

一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.

二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.

数学思考

在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.

解决问题

一、会进行同分母和异分母分式的加减运算.

二、会解决与分式的加减有关的简单实际问题.

三、能进行分式的加、剪、乘、除、乘方的混合运算.

情感态度

通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.

重点

分式的加减法.

难点

异分母分式的加减法及简单的分式混合运算.

教学流程安排

活动流程图

活动内容和目的

活动1:问题引入

活动2:学习同分母分式的加减

活动3:探究异分母分式的加减

活动4:发现分式加减运算法则

活动5:巩固练习、总结、作业

向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情.

类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.

回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.

通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.

通过练习、作业进一步巩固分式的运算.

课前准备

教具

学具

补充材料

课件

教学过程设计

问题与情境

师生行为

设计意图

[活动1]

1.问题一:比较电脑与手抄的录入时间.

2.问题二;帮帮小明算算时间

所需时间为,

如何求出的值?

3.这里用到了分式的加减,提出本节课的主题.

教师通过课件展示问题.学生积极动脑解决问题,提出困惑:

分式如何进行加减?

通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.

[活动2]

1.提出小学数学中一道简单的分数加法题目.

2.用课件引导学生用类比法,归纳总结同分母分式加法法则.

3.教师使用课件展示[例1]

4.教师通过课件出两个小练习.

教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.

学生在教师的引导下,探索同分母分式加减的运算方法.

通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.

由两个学生板书自主完成练习,教师巡视指导学生练习.

运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识.

师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.

让学生进一步体会同分母分式的加减运算.

[活动3]

1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题.

2.教师提出思考题:

异分母的分式加减法要遵守什么法则呢?

教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减.

教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.

由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.

通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.

[活动4]

1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.

2.教师使用课件展示[例2]

3.教师通过课件出4个小练习.

4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知总电阻R与R1R2满足关系式 ;

试用含有R1的式子表示总电阻R

5.教师使用课件展示[例4]

教师提出要求,由学生说出分式加减法则的字母表示形式.

通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.

教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.

教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.

分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.

由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.

让学生体会运用的公式解决问题的过程.

锻炼学生运用法则解决问题的能力,既准确又有速度.

提高学生的计算能力.

通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.

提高学生综合应用知识的能力.

[活动5]

1、教师通过课件出2个分式混合运算的小练习.

2、总结:

a)这节课我们学习了哪些知识?你能说一说吗?

b)⑴方法思路;

c)⑵计算中的主意事项;

d)⑶结果要化简.

3、作业:

a)教科书习题16.2第4、5、6题.

学生练习、巩固.

教师巡视指导.

学生完成、交流.,师生评价.

教师引导学生回忆本节课所学内容,学生回忆()交流,师生共同补充完善.

教师布置作业.

锻炼学生运用法则进行运算的能力,提高准确性及速度.

提高学生归纳总结的能力.

篇六:八年级数学教案 篇六

课题:三角形全等的判定(三)

教学目标:

1、知识目标:

(1)掌握已知三边画三角形的方法;

(2)掌握边边边公理,能用边边边公理证明两个三角形全等;

(3)会添加较明显的辅助线。

2、能力目标:

(1)通过尺规作图使学生得到技能的训练;

(2)通过公理的初步应用,初步培养学生的逻辑推理能力。

3、情感目标:

(1)在公理的形成过程中渗透:实验、观察、归纳;

(2)通过变式训练,培养学生“举一反三”的学习习惯。

教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

教学用具:直尺,微机

教学方法:自学辅导

教学过程:

1、新课引入

投影显示

问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?

这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

2、公理的获得

问:通过上面问题的分析,满足什么条件的两个三角形全等?

让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

公理:有三边对应相等的两个三角形全等。

应用格式: (略)

强调说明:

(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)

(3)、此公理与前面学过的公理区别与联系

(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

(5)说明AAA与SSA不能判定三角形全等。

3、公理的应用

(1) 讲解例1。学生分析完成,教师注重完成后的点评。

例1 如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架

求证:AD⊥BC

分析:(设问程序)

(1)要证AD⊥BC只要证什么?

(2)要证∠1=

只要证什么?(3)要证∠1=∠2只要证什么?

(4)△ABD和△ACD全等的条件具备吗?依据是什么?

证明:(略)

221381
领取福利

微信扫码领取福利

微信扫码分享