好文档 - 专业文书写作范文服务资料分享网站

反三角函数(教案)_反三角函数详解

天下 分享 时间: 加入收藏 我要投稿 点赞

反三角函数(教案)由好文档网小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“反三角函数详解”。

第4节 反三角函数(2课时)

第1课时

[教材分析]:反三角函数的重点是概念,关键是反三角函数与三角函数之间的联系与区别。内容上,自然是定义和函数性质、图象;教学方法上,着重强调类比和比较。

另外,函数与反函数之间的关系,是本节内容中的一个难点,同时涉及上学期内容,可能是个值得复习的机会。

[课题引入]:在辅助角公式中,我们知道

其中cosasinxbcosxa2b2sinx,aab22,sinbab22,这样表述相当烦琐,我们想是否有比较简明的方法来表示辅助角呢?这就是我们今天要引入的问题——反三角函数。

[教学过程]:

师:首先我们回顾一下,什么样的函数才有反函数?

答:一一对应的函数具有反函数,最典型的例子就是单调函数具有反函数(但反之不真)。师:我们知道正弦函数ysinx在定义域R上是周期函数,当然不是一一对应的,因而没有反函数。但是,如果我们截取其中的一个单调区间,比方说我们研究函数:

ysinx,x,,这个函数是单调函数,因而有反函数。

22师:现在我们来求这个函数的反函数,那么求反函数有哪些步骤?(反解,互换x,y)(这里我们使用符号arcsin表示反解)反解得xarcsiny,互换得yarcsinx,其中x1,1,y,,这就是要求的反正弦函数。

221. 反正弦函数的图象

反正弦函数yarcsinx,x1,1与函数ysinx,x个函数图象关于直线yx对称。2. 反正弦函数的性质(由函数图象可得)

因此两,互为反函数,22,1,值域为①定义域为1,; 22,1上单调递增; ②yarcsinx在定义域1xarcsinx ③yarcsinx是奇函数,即对任意x1,1,有arcsin3. 反正弦函数的恒等式

①由“一一对应”的性质知:对任意值x1,1,在,上都有唯一对应的角22arcsinx,使得它的正弦值为x,即得恒等式sinarcsinxx,x1,1;

②由“一一对应”的性质知:对任意角x在1,1上都有唯一对应的值sinx,,,22,。22sinxx,x使得它的反正弦值为x,即得恒等式arcsin例题选编:

[例1]:求下列反三角函数值:(1)arcsin31 ;(2)arcsin0(3)arcsin 22解:利用恒等式1来理解题意(1): 记arcsin33sinx3sinx,也就是在,上找xsinarcsin22222一个角x,使得sinx3;(2)(3)类似。2说明:对于特殊值的反正弦函数值的处理,利用恒等式1理解是一种本人以为较为机械的方法;但不知是否适合于初学者,有待讨论。可能直接让他们感受概念会来得更为简单些吧,实际上教材P98的思路有点类似于本文的处理方式。[例2]:用反正弦函数值的形式表示下列各式中的x :(1)sinx3,x,,5221,x,,422(2)sinx(3)sinx3,x0, 3解:利用恒等式2来理解题意:

sinx(1)33sinxarcsin3,arcsin而x,,故有xarcsin;

555223sinxarcsin3,而xarcsin,,故不能直接利用恒3322(3)sinx等式2,需要利用诱导公式,将角度转化到,上,此时涉及讨论: 22若x0,33,则 arcsinsinxarcsinxarcsin332若x,,则x0,,故有 223sinxarcsin3xarcsin3 arcsin333sinxarcsinarcsin即xarcsin3。3[例3]:化简下列各式:

(1)arcsinsin(2)arcsinsin95sin3.49 (3)arcsin6解:此题直接利用恒等式2,当区间不满足要求时,需要利用诱导公式转化区间。(1),,由恒等式2得arcsinsin; 9229955转化了; arcsinsin,这里将6666(2)arcsinsinsin3.49arcsinsin0.49 sin30.49arcsin(3)arcsinsin0.490.49。arcsin[例4]:判断下列各式是否成立:(1)arcsin3312k,kZ ;(2)arcsin;(3)arcsin22332(4)arcsinarcsin;(5)sinarcsin22

3322(6)sinarcsin1010 解:(1)对;(2)错;(3)当k0时对;(4)错,[例5]:写出下列函数的定义域和值域:

(1)y2arcsinx;(2)yarcsinxx 解:(1)

31,1;(5)错;(6)对。

2x1,1x0,1,由反正弦函数的单调性知y0,(2)xx1,1x21515,,22这是典型的复合函数求值域问题,由ux2x1,1和反正弦函数的单调性可知: 41yarcsin,

42[例6]:求下列函数的反函数:(1)ysin2x,x, 443, 22(2)y2sinx,x(3)y21arcsinx 2sin2x2x,解:(1)反解得arcsinyarcsin(恒等式2的运用,注意区间)

互换x,y即得反函数为y1arcsinx 2sinxarcsinsinxx,互换x,y即得反函(2)反解得arcsinarcsin数为yarcsin。(3)

作业:P99 练习1、2、3

[课题总结]: [试题选编]: y2x2

反三角函数定义域

反正弦函数与反余弦函数的定义域是[-1,1],反正切函数和反余切函数的定义域是R,反正割函数和反余割函数的定义域是(-∞,-1]U[1,+∞)。扩展资料反三角函数定义域及值域反正弦函数正弦......

反三角函数的性质

反正弦、反余弦函数定义域均为[-1,1],反正切、反余切函数定义域均为(-∞, ∞)。反正弦函数值域为[-π/2,π/2],反余弦函数值域为[0,π],反正切函数值域为(-π/2,π/2),反正切函数值域为(0......

反三角函数公式总结

反三角函数公式总结反三角函数公式总结反三角函数:y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]图象用红色线条;y=arccos(x),定义域[-1,1] , 值域[0,π],图象用蓝色线条;y=arctan(x),......

反三角函数导数表

反三角函数导数:(arcsinx)=1/√(1-x);(arccosx)=-1/√(1-x);(arctanx)=1/(1+x);(arccotx)=-1/(1+x)。扩展资料反三角函数求导公式(arcsinx)=1/√(1-x)(arccosx)=-1/√(1-x)(arct......

反三角函数知识点总结

反三角函数知识点总结反三角函数并不难,关键是要理解反三角函数的意义,这是其一,第二要充分掌握诱导公式,反三角其实是考察由三角函数值表示非特殊角,所以经常要用到π+arcsin,π......

221381
领取福利

微信扫码领取福利

微信扫码分享