好文档 - 专业文书写作范文服务资料分享网站

六年级数学教案15篇

天下 分享 时间: 加入收藏 我要投稿 点赞

六年级数学教案15篇

  作为一位兢兢业业的人民教师,常常需要准备教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么大家知道正规的教案是怎么写的吗?以下是小编收集整理的六年级数学教案,欢迎阅读,希望大家能够喜欢。

六年级数学教案1

  教学目标

  使学生掌握分数除法和加、减法混合运算的运算顺序,能正确进行运算,并根据具体情况合理计算,提高学生四则计算的能力。

  教学重难点

  能正确进行运算,并根据具体情况合理计算,提高学生四则计算的能力。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 复习引新

  二、教学新课

  三、课堂

  四、作业

  1、说说下面各题的运算顺序

  8÷2+9÷318÷(12-3)

  2、将上题中的数据改为分数,问运算顺序怎样?

  3、问:分数除法和加、减法的混合运算顺序和整数除法和加、减法的混合运算顺序是否一样?

  1、出示例1

  让学生自己独立完成,一人上黑板,集体说解题顺序。

  2、组织练习

  做“练一练”第1题

  3、教学例2

  出示例2

  问:先算什么,再算什么?

  学生口答、老师边板书边提问。

  指出:这道题在把除法改为乘法后,可以应用乘法分配律使计算简便。所以我们在混合运算时,每一步计算时,都要注意观察算式的特点,能用简便算法的一般用简便算法。

  4、组织练习

  做“练一练”第2题

  问:应用了什么定律,要怎样计算?

  指出:在除法转化成乘法后,要注意有一些题可以用乘法的运算定律使计算简便。

  这节课学习了分数除法和加、减法的混合运算。谁来说一说它的运算顺序怎样?运算时要注意什么?

  练习十一第1~3题的第一行,第4、5题

  课后感受

  本节课的重点放在简便运算上,基本上同学们还是掌握的不错。

六年级数学教案2

  教学目标

  1.使学生掌握分数、小数四则混合运算的运算顺序及计算方法,并能正确地进行计算。

  2.训练学生认真审题,能够选择合理简便的解题方法。

  3.培养学生良好的学习习惯及正确、合理、灵活、迅速的运算能力。

  教学重点和难点

  教学重点:掌握分数、小数四则混合运算的运算顺序,并且能根据不同的情况选用不同的方法进行计算。

  教学难点:灵活、合理地运用不同的方法进行计算。

  教学过程设计

  (一)复习

  1.第74页第1题。

  (1)把下面的小数化成分数:

  0.125 0.3 0.5 0.6 0.25 0.75

  (2)把下面的分数化成小数:

  以上各题用投影片出示,指名口答。

  2.我们已经知道,分数、小数加减混合运算,可以根据已知数的具体情况来确定是先把分数化成小数,还是先把小数化成分数,从而进行计算。

  下面各题用什么方法进行计算比较简单?

  提问:分数、小数加减混合运算一般情况下化成什么数做比较简便?为什么?

  提问:分数和小数乘、除混合运算在一般情况下,化成什么数做比较简便?为什么?(第三种方法最简便,但这种做法只有小数能够被分数的分母除尽时才最方便,一般情况下分数、小数乘除混合运算把小数化成分数来做比较简便。)

  (二)学习新课

  以上这些计算方法是我们进行分数、小数四则混合运算的基本方法。

  (板书课题:分数、小数四则混合运算)

  (1)小组讨论:这道题怎样计算比较简便?(把小数化成分数计算比较简便。)

  (2)全体同学在练习本上试做,通过试做,体会一下为什么用这种方法进行计算简便?

  (3)订正,并且说说这种做法有什么好处?(因为计算分数乘、除法时,有时可以先约分再计算比较简便,所以,分数、小数乘除混合运算一般先把小数化成分数后再计算。)

  (1)审题:例5与例4有什么不同之处?

  (例4是分数、小数乘、除混合运算,例5是分数,小数四则混合运算。)

  (2)想一想,做这道题的时候,我们应该注意些什么?(a.运算顺序;b.选择合理恰当的方法。)

  (3)小组讨论:这道题是把小数化成分数算简便,还是把分数化成小数算简便?(把小数化成分数计算比较简便。)

  (4)全体同学在练习本上试做。

  (5)订正。

  (6)小结:我们把题目中的小数都化成了分数,这样在乘除过程中,有时可以先约分,使得做起来比较简便,同时得到的是一个准确的结果。

  (7)如果计算的结果允许取近似值,也可以先把分数化成小数,取它们的近似值进行计算。在本册教材中,一般要求只取两位小数,这种算法在现在电子计算机越来越被广泛使用的社会里是很有价值的,因为,大多数电子计算机都是用小数来计算的。请你用这种方法试做这道题:

  ≈5.2÷3.2-1.67×0.7(注意:这一步用“≈”)

  =1.625-1.169

  =0.456

  订正此题,并且教师要强调:如果计算的结果允许取近似值,才可以把分数化成小数来计算。

  3.小结。

  两位同组的同学互相说一说:

  (1)分数、小数乘、除混合运算,怎样计算比较简便?

  (2)分数、小数四则混合运算,又怎样计算简便?

  看书质疑。

  (三)巩固反馈

  采用分小组巩固练习的形式。

  1.用题板做练习,大面积反馈。

  举题板订正,再把两种不同的计算方法进行比较:

  不难看出,第二种方法更简便一些。所以解题方法不是一成不变的,还要根据题目的具体情况,如数的特征、运算符号等决定怎样做简便就怎样做,故在掌握了一般方法的基础上,还要灵活运用。

  2.互相帮助:1,3,5组同学做题(1);2,4,6组同学做题(2)。之后,同桌同学交换检查,指出错误,加以改正,使学生掌握检查的方法,并养成检查的习惯。

  教师出示正确答案,哪组的同学都做对了就给予表扬。

  3.全体同学齐做。

  把题中的分数化成小数后再计算。(保留两位小数。)

  ≈13×0.56-16.24÷3.5

  =7.28-4.64

  =2.64

  (四)课堂总结

六年级数学教案3

  教学目标:

  引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法;通过互助活动,培养学生与人合作、与人交流的习惯;通过自行设计方案,培养学生自主探索和创新的意识。

  教学重、难点:理解倒数的含义,掌握求倒数的方法。

  教学过程:

  (一)导入

  1.找找下面文字的构成规律

  呆---杏土---干吞---吴

  2.按照上面的规律填数

  --()--()--()

  能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数

  (二)教学实施

  关于倒数同学们想知道些什么呢?学习倒数的含义

  1.观察教材24页的例1,归纳,总结倒数的含义,

  2.举例验证:4和,7和,3和

  4乘的积是,所以4和互为倒数;7可以看成分母是1的分数,把分子、分母调换位置后就是,所以7和互为倒数。

  归纳:乘积是1的两个数互为倒数。

  3.特殊数:0和1(引导学生辩论0有没有倒数,1有没有倒数,是多少?)

  教师归纳板书:0没有倒数,1的倒数就是它本身。

  4.学习例2--求倒数的方法

  让学生根据已学知识独立解决怎样求一个数的倒数,集体订正,教师归纳,板书:求倒数的方法

  5.反馈练习

  完成教材24页的做一做,完成练习六的第3、4题

  (三)课堂练习

  找一找下列数中哪两个数互为倒数

  210

  填空

  的倒数是(),()的倒数是。

  10的倒数是(),()没有倒数。

  (四)课堂小结

  学完本节课,我们知道了乘积是1的来年各个数互为倒数。1的倒数是它本身,0没有倒数。

  课后反思:

六年级数学教案4

  课模简介

  日常的新授课,我基本围绕“先学后教,当堂训练”的教学模式完成教学任务,先学和当堂训练都体现了学生一节课的自主性,教师只需要“点”。不过我个人认为教学模式不是一成不变的,比如数学有计算教学新授课、空间与图形教学新授课、统计与概率新授课等,不同的课型有时模式也是灵活多变的,这样才能把一节课上实、上好。“先学后教,当堂训练”教学模式在课堂上呈现为“五个环节”。

  1.导入新课,板书课题环节。一般是开门见山进入新课并板书课题,也经常采用设问激疑法起动新课,引出课题并板书课题。

  2.揭示目标,明确任务环节。一般采用投影或小黑板方式呈现。要求简明扼要,具体明确,实实在在。

  3.先学环节。一般包括学生看书和动态检测两个小环节。学生需要是小组合作先学,要手脑并用,积极思考。动态检测是对看书自学效果进行检查测验的手段,一般有提问、板演、书面练习等形式。动态检测中教师要善于发现学生在自学过程中出现的问题、错误,并积极思考备课,为进入“后教”环节做好准备。

  4.后教环节。一般包括订正、讨论、补充、总结几个小环节。方式上通过订正、讨论,各抒己见,会的教不会的,必要时教师出面帮助学生补充、订正、归纳、总结、完善,目的是让学生加深对所学内容的理解和巩固,最终形成分析问题和解决问题的能力。

  5、当堂训练环节。这一环节通过训练巩固当堂所学内容,并把知识转化为分析问题和解决问题的能力,实现“堂堂清”。在训练设计上要特别讲究,如低起点、小坡度、多层次、多类型,有必做题目、选做题目、思考题目等等,让不同学习状况的学生都达到不同的训练目的。

  本节复习课我主要采用“揭示课题、明确目标——回顾整理、形成体系——基本训练、查漏补缺——综合应用、融会贯通——评价小结、提升学力”的复习课课堂教学模式。

  圆的整理和复习说课材料

  【教学目标】:

  1.通过整理和复习使学生进一步认识圆的特征,熟练掌握圆的周长和面积的计算公式,进一步理解公式的推导过程。

  2.通过小组合作使学生学会分类整理的方法,感受事物之间是相互联系的。

  3、培养学生灵活运用圆的知识解决实际问题的能力,增强学生对数学的应用意识。

  【重、难点】:

  重点:整体把握有关圆的知识,理解圆的周长和面积的意义及计算公式的推导过程,能熟练运用圆的周长和面积的计算公式。

  难点:进一步体会“化曲为直”的思想,并能灵活运用圆的知识解决有关的实际问题。

  教学过程:

  一、创设情景,生成问题

  师:(指着圆形图片)这是什么图形?

  生:圆。

  师:圆已经是我们的老朋友了。子曰:温故而知新,可以为师矣。这节课我们就再次走进多姿多彩圆的世界,对圆的知识进行整理和复习。出示学习目标。

  (设计意图:通过出示圆形图片,加上简洁的语言使学生的注意力,从关注外部形象引到思考内在联系上,水到渠成的进入数学知识的复习。)

  二、回顾整理,形成体系。

  师:请同学们回忆一下,圆这一单元我们主要研究了哪些知识点?

  生:圆的认识,圆的周长,圆的面积······

  1、学生自主整理

  师:刚才,同学们说的都是圆这一单元的重点内容,但有点乱,怎样是这些知识更有条理呢?这就需要我们对这些知识进行整理。下面就请同学们先看一遍教材,然后根据这些知识要点和它们之间的联系用自己喜欢的方式进行整理。要求整理的结果一定要简洁,清晰,一目了然。(学生整理。教师巡回指导。)

  (设计意图:先让学生根据自己的学习状况自主地对知识点进行归纳,分类,整合,使学过的知识系统化。)

  2、以小组为单位相互交流,讨论完善整理结果,取长补短,构建新的认知结构。

  (设计意图:通过小组交流、讨论,使学生对自己的整理的结果进行取长补短。)

  3、全班交流,指名汇报,其他小组进行评价、补充。

  要求:在别的同学进行汇报时,要注意倾听;评价时要看知识点是否完整,是否有条理;不要重复汇报。

  (设计意图:面向全班同学汇报交流,目的是创生更多的学习资源,让不一样的整理方式、不一样的思维模式进行碰撞,让学生在交流中相互矫正、相互补充、相互借鉴,让学生在头脑中形成完整的知识体系。)

  4、根据整理结果,让学生对重点内容进行消化、吸收。

  师:通过整理图表,对于本单元你又有哪些收获?

  圆有哪些特征。

  圆的周长的意义,计算公式以及推导过程。

  圆的面积的意义,计算公式以及推导过程。

  圆的周长和面积的联系和区别。

  相同点:计算时需要的条件一样。

  不同点:意义、计算公式、计量单位不一样。

  (设计意图:整理交流完后,再让学生结合自己的情况,进行自我内化吸收、自我完善,以达到对知识熟练掌握的目的。)

  三、重点练习、强化提高

  师:刚才,我们对所学的知识进行了全面、系统、有条理的整理和复习,下面我们就用这些知识来解决一些实际问题。

  (设计意图:使学生进一步加强对圆的周长和面积计算公式的理解,培养学生灵活运用所学的计算公式来解决实际问题的能力,增强对数学的应用意识,在解决实际问题中同时也培养了学生的学习欲望和成功感。)

  最后,教师对本节课学生的学习状态和学习结果进行总体评价。

  课后反思

  圆的复习不但要起到一个回顾知识点的作用,更重要的是将这一章节的内容进行梳理,从而找出知识之间的内在联系,形成更加完善的知识网络体系。从这个角度上来说,整理和复习课应该让学生成为课堂的主人,通过学生之间的交流碰撞,引发知识的重新构建,并形成一个完善的体系。在复习整理这一块的学法上,学生几乎是一片空白,以至于到现在有些学生在复习过程中没有计划,没有目标,对于自己的学习状态也不太了解。反思以往,发现自己在教学中为了授之以鱼而常常忘记了授之以渔。其实,所谓教学,应追求的是教法和学法的统一,在处理教法与学法的关系中,教是为了不需要教。显然,这样的“教”,就得教到点子上,也就是要教学生摸到“学习”的门径,从而达到自己学习的境界,虽然起步晚了一些,但只要迈出这一步,应该会让学生受益匪浅的,所以这堂课的重点,我就将其定位在学生复习整理的学法指导上。而事实证明,当学生通过自己整理得到的复习方法印象非常深刻,学生愿意并且重视相互之间的学习。

六年级数学教案5

  1、教学目标

  1、在活动中将已学的“比的认识”进行梳理、分类、整合,从而体会知识间的内在联系。

  2、进一步理解比的意义,能够正确熟练化简比、求比值,并能合理地应用比的意义解决一些实际问题。

  3、向学生渗透对各类知识点的整合、梳理意识,培养学生科学的学习方法。

  2、新设计

  1、串联信息,整合单元复习内容。

  2、沟通联系,自主搭建知识网络。

  3、聚焦对比,分析说理易混知识。

  4、数形结合,提炼方法优化思路。

  3、学情分析

  厦门市群惠小学六(4)班学生善于思考,思维活跃,勇于表达自己的观点。为了更好地以学定教,我通过前测,对学生平时学习中的薄弱知识进行查缺:求比值和化简比混淆了;比的应用中,没有掌握解答的关键与诀窍。针对学生学情和复习目标,本课设计融入四元素:激趣+梳理+补缺+挑战,并利用电子白板的优势,引导学生自主复习,掌握知识,培养能力。

  4、重点难点

  教学重点:对本单元的知识进行梳理,使之系统化、条理化,学生能够熟练的运用比的知识解决实际问题。

  教学难点:经历知识的整理过程,建构知识网络图;能够熟练比的化简以及应用比的知识解决实际问题。

六年级数学教案6

  教学计划

  新学期伊始,为了使教育教学工作创出新业绩,也为了使自己的教学水平、执教能力有新的起色,特制订本计划。

  一指导思想:

  强化素质教育,坚持平等教育,着重激发学生潜能,扎实开展教学研究,力争教育教学成绩有新的起色。

  二、学情分析:西师版小学六年级数学教案

  本班现在19名学生,其中男生人,女生人。学生基本养成了良好的学习习惯,学习氛围较浓,但学生基础较差,学得比较死,因此,本学期拟就此进行教学研究,力争出佳绩。

  三、教材分析:

  1、本册内容主要包括:

  A、分数乘法、倒数和分数混合运算;

  B、圆和图形的变换与确定,会用工具画圆;掌握圆周长和圆面积的计算公式,能够正确地计算圆的周长和面积;

  C、比和按比例分配;位置;

  E、负数五大部分。

  2、本册教学目标:

  A、使学生理解分数乘除法的意义,掌握分数乘除法的计算法则,比较熟练地进行分数乘除法的计算(对计算简单的能够口算);

  B、使学生掌握圆的特征;

  C、理解比的意义和性质,并正确地应用按比例分配解决问题;

  D能正确地判断事件的可能性。

  E。了解负数的意义,会用负数表

  示日常生活中的一些量。

  四、三维目标

  一、知识与技能

  (1)能合作探究分数乘法、分数倒数的计算方法,正确计算分数乘法、以及分数混合运算;会解决有关分数的简单实际问题。

  (2)通过观察、操作认识圆,会用圆规画圆,了解圆的基本特征;知道扇形;在操作中探索圆的周长、面积的计算方法,并能解决与圆的周长、面积有关的实际问题。

  (3)在实际情景中理解比及比例分配的意义,并能解决简单的问题。能利用方格纸等方式按一定比例将简单图形放大或缩小。了解比例尺,在具体情境中,会按给出的比例进行图上距离与实际距离的换算。

  (4)能根据物体相对于观测点的方向和距离确定物体的位置;能描述简单的路线图。

  (5)体验事件发生的等可能性以及游戏规则的公平性,会求一些简单事件发生的可能性。

  二、过程与方法

  经历解决分数乘、除法,按比例分配,圆周长与面积相关的实际问题的过程,能进行有条理的思考,采用多种方式分析问题中蕴涵的数量关系,能比较清楚地表达自己的思考过程与结果,并对结论的合理性作出有一定说服力的

  说明。

  (2)经历探索圆的特征、圆的周长与面积的计算方法的过程,探索图形的放大与缩小的过程,初步形成空间观念。

  (3)能感觉解决分数乘法、分数除法、按比例分配、圆的周长与面积等问题的需要,圆的周长与面积等问题,集有关的信息,在观察、猜想、试验、验证等活动中,发展合情推理能力。(4)能独立思考,体会数学的基本性质。

  三、情感态度价值观

  (1)愿意了解社会生活中与分数、圆、比等相关的信息,主动参与探求这些知识的活动。

  (2)能在教师和同伴的鼓励与引导下,积极克服教学活动中遇到的困难,有克服困难和运用知识解决问题的成功体验,对自己探索出的结果正确与否有一定的把握,相信自己能够学好数学。

  (3)通过观察、实验、归纳、类比、推断等数学活动,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的正确性。

  (4)对不懂的地方或不同的观点有提出疑问的意识,乐意对数学问题进行讨论,能发现学校过程中的错误并及时改正。

  四、教学重点

  分数乘法、分数倒数的计算方法,正确计算分数

  乘法、以及分数混合运算;通过观察、计算圆的周长、理解比及比例分配的意义,并能解决简单的问题。

  五、教学难点

  分数乘法、分数倒数的计算方法,正确计算分数乘法、以及分数混合运算;通过观察、计算圆的周长。。

  六、教学关键

  分数乘法、分数倒数的计算方法,正确计算分数乘法、以及分数混合运算;通过观察、计算圆的周长。。

  七。教改措施

  1、认真备课,钻研教材,作到课堂上能深入浅出进行教学,特别照顾到后进生。

  2、平时的练习要有针对性,对于后进生和优秀的学生要分别出一些适合他们的练习。

  3、加强操作、直观的教学,例如教学圆和轴对称图形时,就要利用操作、直观教学,以发展他们的空间观念。

  4、增加实践活动,培养学生用数学知识解决实际问题的能力。

  5、加强能力的培养。主要培养学生的分析、比较和综合能力;抽象概括能力;判断、推理能力;迁

  课时划分

  (一)分数乘法,倒数,混合运算1.分数乘法:6课时2.分数除法:7课时

  3.分数混合运算和应用题:4课时

  (二)圆(共10课时)1.圆的认识:2课时

  2.圆的周长和面积:5课时:3课时

  圆和图形的变换与确定位置:6课时

  (三)比和按比例分配:10课时

  (四)位置:6课时

  (五)可能性:4课时

  八、教改设想

  1、认真备课,钻研教材,作到课堂上能深入浅出进行教学,特别照顾到后进生。

  2、平时的练习要有针对性,对于后进生和优秀的学生要分别出一些适合他们的练习。

  3、加强操作、直观的教学,例如教学圆和轴对称图形时,就要利用操作、直观教学,以发展他们的空间观念。

  4、增加实践活动,培养学生用数学知识解决实际问题的能力。

  5、加强能力的培养。主要培养学生的分析、比较和综合能力;抽象概括能力;判断、推理能力;迁移能力。

  八、提高教学质量的措施

  1、增加实践活动,培养学生用数学知识解决实际问题的能力。

  2、加强能力的培养。主要培养学生的分析、比较和综合

六年级数学教案7

  学习内容

  教科书第55页例2,课堂活动第2题,练习十五第4~7题。

  育人目标

  1.进一步掌握按比例分配解决问题的方法,能合理、灵活地解决3个数连比的按比例分配的问题。

  2.经历解决三个数连比的按比例分配解决问题的过程,总结出按比例分配问题的解决方法,提高解决问题的能力。

  3.通过小组交流合作,共同寻找解决问题的方法,使学生的个性得到了张扬,获得了积极的情感体验。

  4.在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  5.在按比例分配的过程中,感受分配方案的简洁美、理性美。

  6.经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  学习重难点

  重点:把两个数比的问题的解题方法推广到三个数连比的问题。

  难点:理解三个数连比的问题的解题方法。

  学习评价设计

  学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。

  教学过程

  导入新课

  1.填空。(多媒体出示题目)

  (1)小明家养了35只鸡,公鸡和母鸡只数比是3∶4,公鸡( )只,母鸡( )只。

  (2)丹顶鹤是国家一级保护动物。我国与其他国家拥有丹顶鹤只数的比是1∶3,20xx年全世界大约有20xx只丹顶鹤,我国有( )只。其他国家有( )只。

  学生回答反馈,说说怎样思考,集体评价。

  2.引入谈话:怎样解决按比例分配的问题?

  在实际生活中还有哪些问题可以用按比例分配的方法解决?生举例。(组织学生分组讨论.

  反馈.

  交流后,老师及时做出评价)

  在建筑业中很多地方也用到按比例分配的方法来解决实际问题,今天我们继续研究这方面的问题。

  独立思考再交流方法和结果,集体评价。

  举例,分组讨论、反馈、交流。

  探究新知

  1.课件出示例2:从题中你获取了什么信息?(学生交流获取的信息)

  要配制220吨混凝土,水泥、沙子、石子的比是:2∶3∶6,需要水泥、沙子、石子各多少吨?

  2.教师组织学生讨论:这道题与前面所做的题有什么区别?怎样解答?

  生1:前面所做的题都是两个量的比,这道题是三个量的比。

  生2:可以仿照上节所学的按比例分配方法去解。

  3.学生尝试解答,教师巡视。

  4.展示学生解法,说出解题思路。

  方法1:220÷(2+3+6)=20(吨)

  需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20×3=60(吨)需要石子的吨数:20×6=120(吨)

  答:需要水泥40吨,需要沙子60吨,需要石子120吨。

  方法2:总份数:2+3+6=11

  需要水泥的吨数:220x2/11=40(吨)

  需要沙子的吨数:220x3/11=60(吨)

  需要石子的吨数:220×6/11=120(吨)

  方法3:根据已有知识,用方程解。先求出每份是多少吨,再分别求出沙子、石子、水泥应需的吨数。

  解:设每份是x吨.

  2x+3x+6x=220

  11x=220

  x=20

  需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20× 3=60(吨),需要石子的吨数:20×6=120(吨)

  5.议一议:怎样解决按比例分配的.问题?

  学生先独立思考,再在小组内交流,最后师生共同总结出解决按比例分配问题的一般方法:要先求出总份数,求出每一份的量,再求出各部分的量;或者求出总份数后再看各部分量占总数量的几分之几,最后求各部分量;或者设每1份的量为未知数,列方程来解答。

  学生交流获取的信息。

  讨论交流异同。

  尝试解答,再展示交流解题思路。

  独立思考,再小组交流、小结解决按比例分配问题的一般方法。

  在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  在按比例分配的过程中,感受分配方案的简洁美、理性美。

  巩固练习

  1.课堂活动第2题。

  根据给出的这三种蛋的连比,组织学生讨论后尝试独立解题,交流解题方法。

  2.一堆混凝土中沙子有100kg,石子有60kg,水泥有240kg。要配制180吨这样的混凝土,需要沙子、石子、水泥各多少吨?

  教师组织学生讨论:这道题与前面所做的题有什么区别?

  引导学生得出,这个问题中虽然没有给出沙子、石子、水泥的连比,但已给出了一个配料方法,根据给出的数值,可以求出这三种料的连比。

  学生讨论后尝试独立解题。完成后交流解决问题的方法。

  刚才同学们通过上题计算,知道混凝土中沙子、石子、水泥的比为5∶3∶12。现有一堆总重为40吨的混凝土,经现场测量,水泥有20吨,沙子有12吨,石子有8吨。这堆混凝土符合配比吗?

  再次组织学生讨论,交流得出:先求出现场测量的三种配料的比3:2:5,然后与要求的配料的比比较,得出:这堆混凝土不符合要求。

  学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。

  学生讨论找到方法。

  独立解题,再交流解题方法。

  讨论交流得出结论。

  经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  课堂小结

  想一想,今天学习的知识与昨天有什么不同?又有什么相同?

  谈收获。

  课堂作业

  练习十五第4—7题。

  独立完成。

六年级数学教案8

  一、 教学内容:九年义务教育六年制第九册第二单元《倒数的认识》

  二、 教材分析:

  倒数的认识是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。倒数的认识是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。

  三、 教学目标:1.理解倒数的意义,掌握求倒数的方法。

  2.能熟练地写出一个数的倒数。

  3.结合教学实际培养学生的抽象概括能力。

  四、 教学重点:理解倒数的意义,掌握求倒数的方法。

  五、 教学难点:熟练写出一个数的倒数。

  六、 教学过程:

  (一)、 谈话

  1.交流

  师: 我们的黑板是什么颜色?

  生:黑色。

  师:教室的墙面又是什么颜色?

  生:黑色。

  师:黑与白在语文上是什么关系?

  生:黑是白的反义词。

  生:白是黑的反义词。

  师:能说黑是反义词或白是反义词吗?

  生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。

  师:那么,数学上有没有相互依存关系的现象呢?

  生:约数和倍数。

  师:你能举例说明约数和倍数的相互依存关系吗?

  生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。

  2.导入 今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。

  (二)、学习新知

  对数游戏

  1.学习倒数的意义

  我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4 说一个数,同学们跟着根据3和4说一个数 。

  师:4是3的4/3,

  生:3是4的 3/4

  师:7是15的7/15; 生:15是7的15/7。

  提问;看我们做游戏的结果,你们有没有发现什么?

六年级数学教案9

  教学内容

  教科书第112页例1、第113页例2及“做一做”中的题目,完成练习二十九的第1~4题.

  教学目的

  使学生在学过的百分数的意义和分数应用题的基础上,能够正确地解答求一个数是另一个数的百分之几的应用题.

  教具准备

  将复习中的第1题图画在小黑板上,第2题写在黑板上.

  教学过程

  一、复习

  1.看图,回答下面的问题.

  (1)图中阴影部分占整个图形的几分之几?用百分数怎样表示?

  (2)图中空白部分占阴影部分的几分之几?用百分数怎样表示?

  先让学生想一想,然后,再指定学生回答.

  2.五年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占五年级学生人数的几分之几?

  出示上面的复习题后,先让学生在练习本上做,同时,请3名学生在黑板上每人做一题.

  核对第2题时,教师可以说明:这道题是求五年级学生中已达到国家体育锻炼标准的人数占五年级全体学生人数的几分之几.

  然后提问:

  “解答这样的题目关键是什么?”

  “关键是应该以谁作单位‘1’?”

  “用什么方法计算?怎样列式?”

  教师:这是我们过去学过的分数应用题.百分数的应用题跟分数应用题类似.下面我们就来学习百分数应用题.板书课题:百分数的一般应用题(一).

  二、新课

  1.教学例1.

  出示例1:“五年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占五年级学生人数的百分之几?”

  请学生读题,提问:

  “这道题和上面复习中的第2题有什么不同?”

  “解答这道题应该以谁作单位‘1’?用什么方法计算?怎样列式?”学生口述,教师板书:120÷160=0.75=75%

  教师:这道题和上面复习中的第2题相比,题目的条件完全相同,只是问题不同.因为这道题的问题是求占五年级学生人数的百分之几,所以要把结果化成百分数.

  2.出示练习题:“一班种树40棵,二班种树48棵,二班种树的棵数占一班的百分之几?”先让学生想一想,再提问:

  “这道题怎样列式?”

  让学生讨论一下.

  学生讨论后,教师说明:解答这样的题目,必须看清求的是什么,弄清以谁作单位“1”?把数量关系弄清楚了,才能确定怎样列式.

  3.教学例2.

  教师:百分数在日常生活和生产中的应用非常广泛.比如在农业生产中,要实行科学种田,播种前需要进行种子发芽试验,然后根据发芽的种子数占试验种子总数的百分之几,决定单位面积的播种量.这样既能确保基本苗的数量,又可以避免浪费种子.通常把“发芽的种子数占试验种子总数的百分之几叫做发芽率”(口述后再板书发芽率的概念).求发芽率是百分数在农业生产上的一种重要应用.

  口述并板书发芽率计算公式:

  发芽率=×100%

  教师指着公式中的百分号说明:在这个公式中为什么要乘100%呢?因为发芽率是指发芽的种子数占试验种子总数的百分之几,如果公式只写成,不加“×100%”,一般来讲,这只是分数形式,除得的商是小数,而不是百分数.如果在的后面加上“×100%”,相当于乘1,这样就可以使除得的结果化成大小不变的百分数了.所以在计算发芽率的公式中必须加上“×100%”.我们在这以后还要学习像出粉率、合格率、出勤率等等,这些也要用百分数表示,所以它们的计算公式也必须加上“×100%”.

六年级数学教案10

  教学内容:

  苏教版义务教育教科书《数学》六年级上册70~71页例2、练一练,第73页练习十一第4~7题。

  教学目标:

  1、使学生初步学会用“假设”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。

  2、使学生在对解决实际问题过程的不断反思中,感受“假设”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点:

  解决用假设的策略时总量变化的实际问题。

  教学难点:

  理解假设时数量的复杂关系。

  教学过程:

  一、出示问题,讨论策略

  1、出示例2,读题。

  2、小组讨论:你准备怎样来解决这个问题?用什么策略?

  3、你准备怎样假设呢?

  二、自主探索,运用策略。

  1、出示提问:

  (1)这题告诉了我们哪些条件,要求什么问题?

  (2)你是怎样理解题中数量之间关系的?

  通过交流理解:1个大盒里的球的个数+5个小盒里球的个数=80,1个大盒里球的个数—8=1个小盒里球的个数,或者1个

  小盒里球的个数+8=1个大盒里球的个数。

  2、列式计算:

  (1)你能根据假设后的数量关系列示解决吗?

  (2)提问:如果假设6个全是大盒,球的总数又会发生怎样的变化呢?请大家先想一想,再根据这样的假设算出结

  果,看看答案是不是相同。

  集体评议,重点讨论球的总数发生了怎样的变化。

  3、引导比较:

  (1)刚才我们用两种思路解决了例2,假设6个全是小盒或者假设6个全是大盒,虽然假设的方法不一样,但你发现

  它们有什么相同的地方吗?

  小结。

  三、反思比较,内化策略。

  1、比较异同。

  引导:上节课我们学习了例1,明确了假设的策略,今天又学习了例2,用假设的策略解决了另一类比较复杂的问题。回想一下,例1和例2的条件有什么相同和不同,解决时又有什么相同和不同?

  同桌讨论后全班交流。

  2、反思内化。

  引导:回顾例1和例2解决问题的过程,你有什么体会?

  四、拓展应用,巩固策略

  1、做练一练第1题

  提问:两种不同的假设有什么区别,解题时有什么不同?

  让学生列式解答,指名板演。

  2、做练一练第2题。

  指出:当已知大、小两种量相差多少时,用假设策略时要按假设的方法,思考总量有什么变化,是增加了多少还是

  减少了多少。

  3、做练习十一第5题

  引导学生课业用三种不同的假设方法说明。

  五、全课总结:

  1、这节课我们学了什么本领?你有什么想法或还不懂的地方可以提出来?

  2、作业:

  完成练习十一第4、6、7题。

六年级数学教案11

  教学目标

  1. 在具体情境中,通过画一画的活动,初步认识正比例图像。

  2.会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的

  变量的值。

  3.利用正比例关系,解决生活中的一些简单问题。

  教学重点

  1.在具体情境中,通过画一画的活动,初步认识正比例图象。

  2.会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。

  教学难点

  1.会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。

  2.利用正比例关系,解决生活中的一些简单问题。

  教学过程

  一、复习

  活动一:判断下面的量是否成正比例关系?

  1.每行人数一定,总人数和行数。

  2.长方形的长一定,宽和面积。

  3.长方体的底面积一定,体积和高。

  4.分子一定,分母和分数值。

  5.长方形的周长一定,长和宽。

  6.一个自然数和它的倒数。

  7.正方形的边长与周长。

  8.正方形的边长与面积。

  9.圆的半径与周长。

  10.圆的面积与半径。

  11.什么样的两个量叫做成正比例的量?

  二、新授

  活动二:探索一个数与它的5倍之间的关系。

  1.求出一个数的5倍,填写书上表格。自己独立完成。

  2.判断一个数的5倍和这个数有怎样的关系?说说你判断的理由。

  (一个数和它的5倍之间具有正比例关系。)

  3.根据上表,说出下图中各点的含义。(图见书上P22)。请观察横轴表示什么?纵轴表示什么?然后说说各点表示的含义。

  4. 连接各点,你发现了什么?

  (所描的点都在同一条直线上。)

  5.利用书上的图,把下表填完整。

  6.估计并找一找这组数据在统计图上的位置。

  自己独立完成。

  7.在统计图上估计一下,看看自己估计的是否准确。

  三、练习

  活动三:试一试。

  1. 在下图中描点(图见课本P22),表示第20页两个表格中的数量关系。

  2. 思考:连接各点,你发现了什么?

  活动四:练一练。

  1. 圆的半径和面积成正比例关系吗?为什么?

  教师讲解:因为圆的面积和半径的比值不是一个常数。

  2. 乘船的人数与所付船费为:(数据见书上)

  (1)将书上的图补充完整。

  (2)说说哪个量没有变?(每人所需的乘船费用没有变化。)

  (3)乘船人数与船费有什么关系?(乘船费用与人数成正比例。)

  (4)连接各点,你发现了什么?(所有的点都在一条直线上。)

  3. 回答下列问题:

  (1)圆的周长与直径成正比例吗?为什么?

  (圆的周长与直径成正比例关系。)

  (2)根据右图,先估计圆的周长,再实际计算。

  ① 直径为5厘米的圆的周长估计值为( ),实际计算值为( )。

  ② 直径为15厘米的圆的周长估计值为(),实际计算值为( )。

  4.把下表填写完整。试着在上页第(1)题的图中描点表示上表中的数量关系,并连接各点,你发现了什么?(表格见书上)

  (所有的点都在同一条直线上。)

  四、课堂小结

  同学们,这节课我们再次巩固练习了正比例的相关知识。大家有什么收获?

六年级数学教案12

  教学内容:

  人教版小学数学教材六年级上册第50~51页内容及相关练习。

  教学目标:

  1.理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。

  2.在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。

  3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。

  教学重点:

  理解比的基本性质

  教学难点:

  正确应用比的基本性质化简比

  教学准备:

  课件,答题纸,实物投影。

  教学过程:

  一、 复习引入

  1.师:同学们先来回忆一下,关于比已经学习了什么知识?

  预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。

  2.你能直接说出700÷25的商吗?

  (1)你是怎么想的?

  (2)依据是什么?

  3.你还记得分数的基本性质吗?举例说明。

  二、新知探究

  (一)猜想比的基本性质

  1.师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?

  预设:比的基本性质。

  2.学生纷纷猜想比的基本性质。

  预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  3.根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  (二)验证比的基本性质

  师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。

  1.教师说明合作要求。

  (1)独立完成:写出一个比,并用自己喜欢的方法进行验证。

  (2)小组讨论学习。

  ①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。

  ②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。

  ③选派一个同学代表小组进行发言。

  2.集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。

  预设:根据比与除法、分数的关系进行验证;根据比值验证。

  3.全班验证。

  16:20=(16○□):(20○□)。

  4.完善归纳,概括出比的基本性质。

  上题中○内可以怎样填?□内可以填任意数吗?为什么?

  (1)学生发表自己的见解并说明理由,教师完善板书。

  (2)学生打开书本读一读比的基本性质,教师板书课题。(比的基本性质)

  5.质疑辨析,深化认识。

  三、比的基本性质的应用

  师:同学们,你们还记得我们学习分数的基本性质的用途吗?什么是最简分数?

  今天我们发现的比的基本性质也有一个非常重要的用途──可以化简比,进而得到一个最简整数比。

  (一)理解最简整数比的含义。

  1.引导学生自学最简整数比的相关知识。

  预设:前项、后项互质的整数比称为最简整数比。

  2.从下列各比中找出最简整数比,并简述理由。

  3:4; 18:12; 19:10; ; 0.75:2。

  (二)初步应用。

  1.化简前项、后项都是整数的比。(课件出示教材第50页例1)

  学生独立尝试,化简后交流。

  (1)15:10=(15÷5):(10÷5)=3:2;

  (2)180:120=(180÷□):(120÷□)=( ):( )。

  预设:除以公因数和逐步除以公因数两种方法,但重点强调除以公因数的方法。

  2.化简前项、后项出现分数、小数的比。(课件出示)

  师:对于前项、后项是整数的比,我们只要除以它们的公因数就可以了,但是像 : 和0.75:2,

  这两个比不是最简整数比,你们能自己找到化简的方法吗?四人小组讨论研究,找到化简的方法。

  学生研究写出具体过程,总结方法,并选代表展示汇报。教师对不同方法进行比较,引导学生掌握一般方法。

  预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。

  3.归纳小结:同学们通过自己的努力探索,总结出了将各类比化为最简整数比的方法。化简时,如果比的前项和后项都是整数,可以同时除以它们的公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。

  4.方法补充,区分化简比和求比值。

  还可以用什么方法化简比?(求比值)

  化简比和求比值有什么不同?

  预设:化简比的最后结果是一个比,求比值的最后结果是一个数。

  5.尝试练习。

  把下面各比化成最简单的整数比(出示教材第51页“做一做”)。

  32:16; 48:40; 0.15:0.3;

  四、巩固练习

  (一)基础练习

  1.教材第53页第4题。

  把下列各比化成后项是100的比。

  (1)学校种植树苗,成活的棵数与种植总棵数的比是49:50。

  (2)要配制一种药水,药剂的质量与药水总质量的比是0.12:1。

  (3)某企业去年实际产值与计划产值的比是275万:250万。

  2.教材第53页第6题。

  (二)拓展练习(PPT课件出示)

  学生口答完成。

  1.2:3这个比中,前项增加12,要使比值不变,后项应该增加( )。

  2.六(1)班男生人数是女生人数的1.2倍,男生、女生人数的比是( ),男生和全班人数的比是( ),女生和全班人数的比是( )

  五、课堂小结

  这节课你有什么收获?还有什么疑问?

六年级数学教案13

  教学内容:第63页例13

  教学目的:巩固除数是两位数的除法法则,学会商中间有零的除法,加深学生对两位数的除法法则的认识,提高计算能力。

  教学重点:巩固除数是两位数的除法法则,学会商中间有零的除法,理解补0占位的意义,提高积算能力。

  教学难点:帮助学生理解商中间有零的除法补0占的意义。

  教学过程:

  一、沟通知识,建立联系

  1.口算。

  3825204450904515

  5138407720809018

  2.不计算,说出下面各题的商是几位数。

  36)458689)720924)7632

  3.笔算。

  7)7563)310

  问:你发现了什么?(板书课题)

  二、独立是做,研究算法

  1.学习例13:出示283527=

  (1)学生独做。

  (2)学生说出算法。

  (3)讨论那种方法正确。

  (4)教师总结算法:当求出商的百位数以后,被除数十位上的3落下来以后13比除数小,该怎么办?引导学生连系学过的知识想:余下的13个十,被27除不够商1个十,要在被除数十位上写0,然后再把被除数的下一位落下来继续除。

  (5)做一做。

  三、综合练习

  练习十四的1---5题。

  1.第1题,让学生填书后集体订正。

  2.第2题,一人板演,全班齐练。

  3.第4题,请1名学生口算。

  为了增强学生的辨别能力特设计算医院练习题诊断。

  129

  71)728656)5492

  71494

  18645

  142

  44

  板书:

  商中间有零的除法

  例13:283527=105

  105

  27)2835

  27

  135

  135

六年级数学教案14

  教学目标:

  1.使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,使学生理解已知一个数几分之几是多少,求这个数的数量关系。

  2.能够正确、熟练地计算一个数除以分数,并能够用方程或算术方法解答已知一个数的几分之几是多少,求这个数的文字叙述题。

  3.培养学生的计算能力及抽象、概括、分析、比较和综合的能力。

  教学重点:使学生理解并掌握一个数除以分数的计算法则。

  教学难点:用方程或算术方法解答已知一个数的几分之几是多少,求这个数的文字叙述题。

  教学过程

  一、复习引新

  1.口算下面各题

  2.口答分数除以整数的计算方法。

  3.一个数的5倍是30,求这个数。

  要求学生独立完成,然后集体订正。

  二、讲授新课

  1.教学例2

  例2一辆汽车小时行驶18千米,1小时行驶多少千米?

  师:题中已知什么,求什么,怎样列式?

  质疑:除数是整数的分数除法我们会计算了,除数是分数的除法怎样计算呢?这节课我们就继续来研究分数除法,(出示课题)。

  师:例2中求1小时行驶多少千米,可以用一条线段表示,启发学生在图上表示出小时行18千米?。(出示课件三下载)

  观察:从图上看1小时里有几个小时?(5个小时)

  请同学们推想:要想求出5个小时行驶多少千米?就必须先求出什么呢?(小时行的路程)

  再启发学生回答:小里有2个小时,2个小时行18千米,用就可以求出小时行驶的千米数,那么,再怎样就能求出1小时行驶的千米数呢?(再乘以5)师生边议论板书:

  请同学叙述中间转变的道理,试着总结计算方法。

  2.教学例3:

  例3小刚小时走了千米,他1小时走多少千米?

  分析:已知什么,求什么,怎样列式:。

  比较:和刚才的那道题目哪儿不一样?

  讨论:这道题如何解答,你从中悟出了什么道理?(小组为单位讨论)

  报告:求出小时走的,1小时里有10个小时,所以再乘以10就求出1小时走的千米数。

  推导过程:

  (千米)

  在这一过程中什么变了,什么没变?

  3.通过以上两道例题的学习,我们共同来讨论分数除法的法则。

  师:不管是整数除以分数,还是分数除以整数及分数除以分数,都可以把它转化为分数乘法进行计算,为了方便于叙述,我们把被除数称为甲数,除数称为那乙数。

  讨论法则:

  甲数除以乙数(0除外),等于甲数乘乙数的倒数。

  4.反馈练习

  5.教学例4

  例4一个数的是,这个数是多少?

  方法(一)解:设这个数为。

  方法(二)

  分析:方法(一)根据什么?

  求一个数的几分之几是多少用乘法计算,把这个数设为所以用方程解答。

  方法(二)根据什么?

  一个因数=积另一个因数,所以还可以直接解答。

  总结:已知一个数的几分之几是多少,求这个数,可以根据一个数乘以分数的意义列方程解答,也可以根据分数除法的意义直接列出除法算式解答。

  6.反馈练习

  一个数的是,这个数是多少?

  三、巩固练习

  1.计算比赛

  2.填空,再说说你是怎样想的。

  ()的是12是的()

  是()的()=4

  3.列方程解答

  乘一个数等于,这个数是多少?

  一个数的是14,这个数是多少?

  四、课堂小结

  我们这节课都学习了哪些知识?分数除法的法则是什么?你还学会了哪些知识?

  五、课后作业

  练习八1、3、7

六年级数学教案15

  教学目标:

  1、通过对圆柱和圆锥知识的复习,进一步熟练解答基本的数学问题。

  2、通过猜想、估算、验证等数学活动,应用圆柱圆锥之间的内在联系解决生活中的问题,同时培养学生的估算能力。

  教学重、难点:灵活计算圆柱体的表面积,圆柱体和圆锥的体积,解决实际问题。

  教学过程:

  一、开门见山、温固引新。

  师:还记得哪些与圆柱圆锥有联系的计算公式?

  生:回答相联系的数学公式。

  师:到底同学们的掌握情况怎样呢?我们一起来做个抢答练习好吗?

  生:回忆基本知识。

  师:到底同学们掌握得怎样呢?老师想通过一个练习来检查同学们公式灵活运用的情况,愿意接受这次挑战吗?

  1、抢答练习,请说出你的思考过程。

  (1)一个圆柱体底面周长12.56米,求它的底面积是多少平方米?

  (2)一个圆柱体木块的体积是90立方米,用他削成一个等底等高的圆锥模型,被削掉的部分是多少立方米?

  (3)一根圆柱形状的木料底面直径16厘米、高20厘米,沿着它的底面直径和高切成相等的两块,表面积增加多少平方厘米?

  学生抢答,并说出自己的思考过程,教师板书。

  2、解决数学问题:

  (1) 出示一圆柱图

  师:看到这个圆柱体,你能提出哪些有关圆柱、圆锥的数学问题?怎样解答?

  竞赛的形式来解决,竞赛要求:

  1、时间3分钟。

  2、请把问题、列式和结果写下来。比一比看谁的问题最多、列式和结果最正确。

  (1) 学生独立完成;

  (2) 同桌互查;

  (3) 学生汇报;

  (半径是多少?周长是多少?圆柱体的侧面积是多少?底面积是多少?圆柱体的体积是多少?等底等高的圆锥的体积是多少?剩余的部分是多少?)

  (4)如果出现问题下面改正。

  师:同学们数学只有在生活中才能体现它真正的价值,现在出现了一道生活中的数学问题大家愿意帮忙解决吗?

  二、解决实际问题:

  最佳设计方案。

  师:问题是这样的:面粉厂准备要招收仓库保管员,领导们打破了常规中只面试就招工的办法,而采用数学考试的方法,出了一道数学题。同学们有兴趣来应聘吗?

  有一张长方形的铁板长9.42米,宽6.28米。请你设计出一种就地围装粮食最多的方案。(接口忽略不计)

  学生活动,老师巡视。小组成员汇报方案。

  三、深化应用。

  师:如果每立方米可装粮食400千克,能算出最佳方案中大约可装多少粮食吗?

  四、课堂总结。

  师:刚才同学们都能全身心地投入到猜想、验证、合作、估算中,老师很高兴。哪些同学可以得到仓库保管员的应聘书呢?请来谈一谈你现在的心情及感受。

  其他同学,通过今天这节课的学习,谁来说一说你有哪些收获?你还存有疑惑或问题吗?

  五、补充题详见共享空间

  课前思考:

  潘老师设计的本课时教案在教学组织形式上与以往的复习课有所不同,重在将所学知识以竞赛的形式进行系统复习,估计这样的形式会让学生对复习产生一些兴趣。

  因为这一单元涉及到的知识较多,而且相关的一些实际问题也都比较复杂,所以我们在复习时还要结合班级实际情况,有针对性地开展复习。

  下面补充这样几题:

  市民广场砌了一个圆柱形的喷水池,从里面量水池的底面半径是5米,深1.2米。

  1.

  (1)这个水池占地多少平方米?

  (2)要在这个水池的四周和底面抹上水泥,抹水泥部分的面积是多少?

  (3)这个水池装满水,最多能装多少立方米?

  (4)在池口围一圈栏杆,栏杆长多少米?

  2.一辆压路机的前轮是圆柱形,轮宽1.8米,直径是1.5米。如果车轮每分钟滚动5周,10分钟压路面多少平方米?压路机10分钟前进了多少米?

  3.一个圆锥形沙堆,底面半径3米,高2米,用这堆沙在5米宽的公路上铺10厘米厚的路面,能铺多长?

221381
领取福利

微信扫码领取福利

微信扫码分享