作为一名辛苦耕耘的教育工作者,时常会需要准备好教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。教案应该怎么写呢?范文网的小编精心为您带来了最新七年级数学教案【优秀4篇】,希望大家可以喜欢并分享出去。
篇一:七年级数学教案 篇一
教学目的:
1、使学生初步到数学与现实世界的密切联系,懂得数学的价值,形成用数学的意识;
2、使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程。
教学分析:
重点:加强数学意识;
难点:数学能力的培养。
教学过程:
一、与数学交朋友
1、数学伴我们成长
人来到世界上的第一天就遇到数学,数学将哺育着你的成长。数学知识开阔了你的视野,改变了你的思维方式,使你变得更聪明了。
从生活的一系列人生活动中,我们会逐渐意识到这一切的一切都和数、数的运算、数的比较、图形的大小、图形的形状、图形的位置有关。另外,数学知识开阔了你的视野,改变了你的思维方式,使我们变得更聪明。
2、人类离不开数学
自然界中的数学不胜枚举。
如:蜜蜂营造的峰房;电子计算机等等。
从生活中的常见的天气预报图,从经济生活中的股票指数,到某些图案的组成:
3、人人都能学会数学
数学并不神秘,不是只有天才才能学好数学,只要通过努力,人人都能学会数学。
学好数学要对数学有兴趣,要有刻苦钻研的精神,要善于发现和提出问题,要善于独立思考。
学好数学还要关于把数学应用于实际问题。
二、激发训练
三、作业巩固
篇二:七年级数学教案 篇二
教学目标
1.知识与能力目标
(1)二元一次方程和一次函数的关系。
(2)二元一次方程组的图象解法。
(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。
2.情感态度价值观目标
通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。
教材分析
前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。
教学重点
1、二元一次方程和一次函数的关系。
2、能根据一次函数的图象求二元一次方程组的近似解。
教学难点
方程和函数之间的对应关系即数形结合的意识和能力。
教学方法
学生操作自主探索的方法
学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”二元一次方程组和“形”函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力。
教学过程
一.故事引入
迪卡儿的故事蜘蛛给予的启示
十七世纪法国数学家迪卡儿有一次生病卧床,他看见屋顶上的一只蜘蛛顺着丝左右爬行。迪卡儿看到蜘蛛的“表演”猛的机灵一动。他想,可以把蜘蛛看成一个点,它可以上、下、左、右运动,能不能把蜘蛛的位置用一组数确定下来呢?
在蜘蛛爬行的启示下,迪卡儿创建了直角坐标系,在坐标系下几何图形(形)和方程(数)建立联系。迪卡儿坐标系起到了桥梁和纽带的作用。从而我们可以把图形化成方程来研究,也可以用图象来研究方程。
这节课我们就来研究二元一次方程(数)与一次函数(形)的关系。
二.尝试探疑
1 、 Y=x+1
你们把我叫一次函数,我也是二元一次方程啊!这是怎么回事,你知道吗?
学生先是疑惑:方程就是方程,函数就是函数,它们能有什么联系呢?然后通过思考、交流,最后恍然大悟。初步感受一次函数与二元一次方程的内在联系。
2、函数y=x+1上的任意一点的坐标是否满足方程xy=1?
以方程xy=1的解为坐标的点在不在函数y=x+1的图象上?方程xy=1与函数y=x+1有何关系?
学生会迫不及待地拿起笔来计算。从函数y=x+1图象上找几个点看它们的坐标是否满足方程xy=1。结果都满足。然后学生就会自主和同伴交流,问一问同伴函数y=x+1图象上的点满足不满足方程xy=1。结果也都满足。这样他们就会搭成共识:函数y=x+1上的任意一点的坐标都满足方程xy=1。
然后学生会用同样的方法得出另一个结论:以方程xy=1的解为坐标的点一定在函数y=x+1的图象上。然后开始思索函数y=x+1和方程xy=1到底有何关系呢?通过交流自动得出结论:以方程xy=1的解为坐标的点组成的图象与一次函数y=x+1的图象相同。
3、在同一坐标系下,化出y=x+1与y=4x2的图象,他们的交点坐标是什么?
方程组y=x+1的解是什么?二者有何关系?
y=4x2
学生根据画图象的方法画出两函数图象,画出交点坐标。用消元法解出方程组的解。学生会大吃一惊:两者出奇地相近或者干脆就相同。这是怎么回事呢?然后开始探究二者关系。通过交流、讨论得出结论:函数y=x+1和y=4x2的交点坐标就是由两个函数表达式组成的方程组
y=x+1的解。
Y=4x2
教师作最后总结:因为函数和方程有以上关系,所以我们就可以用图象法解决方程问题,也可以用方程的方法解决图象问题。
三.方程与函数关系的应用
解方程组x2y=2
2xy=2
学生会很快的用消元法解出来。
老师发问:谁还有其他的方法?如果有,鼓励学生大胆提出。并给予口头表扬。如果没有人用其他的方法,老师提出问题:你能不能用图象的方法求方程组的解呢?这时,学生就会去探索新的思路、方法。
一回忆方程与函数的关系,有了!方程组的解不就是两个方程变形得到的两个函数图象的交点坐标吗?学生就会迅速动笔用这种方法把方程解出来。作完之后,互相交流。学生总结一下做题步骤:
1、把两个方程都化成函数表达式的形式。
2、画出两个函数的图象。
3、画出交点坐标,交点坐标即为方程组的解。
问题又出来了,有的同学的解是x=2有的同学的解是x=2.1 y=2.1
y=1.9有的同学的解是……虽然都和消元法得到的结果相近,但各不相同。
老师提问:你能说一下用图象法解方程组的不足吗?
学生争先恐后的回答:用这种方法求的解是近似值。不准确。学生提出疑问:既然不准确,那学习它有什么用呢?用消元法就足够了!
教师解释一下:在现实生活和生产中,我们会遇到特别复杂的方程,用消元法解不太容易,我们就可以用电脑绘制成函数图象,很容易找出交点坐标。教师可以用Z+Z智能教育平台演示一下。
[点评]用作图象的方法解方程组,这体现了两个知识点的内在联系。学数学知识,探索知识点之间的联系,可起到化新为旧的作用,达到事半功倍的效果。逐步让学生学会这种学习新知识的技巧。
四.引申
方程组x+y=2
x+y=5解的情况如何?你能从函数的角度解释一下吗?
学生用消元法开始解方程组,结果无解,怎么回事呢?学生会尝试运用方程组的图象解法。画出两个函数图象。答案有了!图象是平行的,没有交点。所以方程组无解了。哇!太神奇了!方程的问题可以用图象的方法解决了。
[点评]因为有了上面的用作图象法解方程组,在这里,学生就会自觉地从函数的角度探究方程的问题,初步具有了数形结合的意识和能力。
五.课后小结
本节课我们通过操作和思考,揭示了二元一次方程和函数图象之间的对应关系,从而引入二元一次方程组的图象解法,同时也建立了“数”二元一次方程与“形”函数图象之间的对应关系,培养了学生初步的数形结合的意识和能力。
六.作业
1、用作图象法解方程组2x+y=4
2x3y=12
2、如图,直线L、L相交于点A,试求出A点坐标
教学反思
这节课由故事引入,激发了学生极大的学习兴趣。然后提出了三个尖锐的问题,让学生尝试探索,在探索中既体会到了探索的艰辛,又体会到了成功的喜悦。在应用和引申过程中,尽量让学生自主的发现问题,自主的解决问题。学生在紧张、愉快中完成了这节课的学习。
篇三:初中七年级数学教案 篇三
一元一次不等式组
教学目标
1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;
2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;
3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。
教学难点
正确分析实际问题中的不等关系,列出不等式组。
知识重点
建立不等式组解实际问题的数学模型。
探究实际问题
出示教科书第145页例2(略)
问:(1)你是怎样理解“不能完成任务”的数量含义的?
(2)你是怎样理解“提前完成任务”的数量含义的?
(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?
师生一起讨论解决例2.
归纳小结
1、教科书146页“归纳”(略)。
2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?
在讨论或议论的基础上老师揭示:
步法一致(设、列、解、答);本质有区别。(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。
篇四:七年级数学教案 篇四
一、教学目标:
⑴在具体情景中了解余角与补角,懂得余角和补角的性质,通过练习掌握余角和补角的概念及性质,并能运用它们解决一些简单的实际问题。
⑵经历观察、操作、推理、交流等活动,发展学生的几何概念,培养学生的推理能力和表达能力。
⑶体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的自信心。
二、教学重点、难点:
余角与补角的性质
三、教学过程:
复习、引入:
⑴复习角的定义。你知道有哪些特殊的角?
⑵用量角器量一量图中每组两个角的度数,并求出它们的和。
你有什么发现?
新课:
由学生的发现,给出余角和补角的定义(文字叙述)。
并且用数学符号语言进行理解。
问题1:如何求一个角的余角和补角。
①∠1的余角:90°-∠1
②∠α的补角:180°-∠α
练习:填表(求一个角的余角、补角)
拓广:观察表格,你发现α的余角和α的补角有什么关系?
如何进行理论推导?
结论:α的补角比α的余角大90°
α一定是锐角
钝角没有余角,但一定有补角。
下一篇:关于高一化学教案6篇