平行线及其判定教案格式模板(精选8篇)由好文档网小编整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“平行线及其判定教案”。
第1篇:平行线及其判定(二)
数学备课大师 www.haowendang.cn⊥CM.求证:∠B=2∠DCN.
27.已知:如图,∠FED=∠AHD,∠HAQ=15°,∠ACB=70°,∠CAQ=55.求证:BD∥GE∥AH.
28.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.
29.已知:如图,CD⊥AB于D,DE∥BC,∠1=∠2.求证:FG⊥AB.
30.已知:如图,AB∥CD,∠1=∠B,∠2=∠D.判断BE与DE的位置关系并说明理由.
31.已知:如图,△ABC.求证:∠A+∠B+∠C=180°.
第7篇:“平行线及其判定”检测题[推荐]
龙源期刊网 http://.cn
“平行线及其判定”检测题 作者:张小红
来源:《中学生数理化·七年级数学人教版》2013年第02期2 下列说法:
(1)一条直线的平行线有且只有一条;
(2)经过任意一点有无数条直线与已知直线平行;
(3)经过一点有两条直线与已知直线平行;
(4)过直线外一点有且只有一条直线与已知直线平行。
第8篇:平行线及其判定(基础)知识讲解
平行线及其判定(基础)知识讲解 撰稿:孙景艳审稿: 赵炜
【学习目标】
1.理解平行线的概念,会用作图工具画平行线,了解在同一平面内两条直线的位置关系;
2.掌握平行公理及其推论;
3.掌握平行线的判定方法,并能运用“平行线的判定方法”,判定两条直线是否平行.【要点梳理】
要点
一、平行线的定义及画法
1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b. 要点诠释:
(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;
(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.
(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.
2.平行线的画法:
用直尺和三角板作平行线的步骤:
①落:用三角板的一条直角边与已知直线重合.②靠:用直尺紧靠三角板另一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的直角边通过已知点.④画:沿着这条直角边画一条直线,所画直线与已知直线平行.要点
二、平行公理及推论
1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 要点诠释:
(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.
(3)“平行公理的推论”也叫平行线的传递性.要点
三、直线平行的判定
判定方法1:同位角相等,两直线平行.如上图,几何语言:
∵ ∠3=∠
2∴ AB∥CD(同位角相等,两直线平行)
判定方法2:内错角相等,两直线平行.如上图,几何语言:
∵ ∠1=∠2
∴ AB∥CD(内错角相等,两直线平行)
判定方法3:同旁内角互补,两直线平行.如上图,几何语言:
∵ ∠4+∠2=180°
∴ AB∥CD(同旁内角互补,两直线平行)
要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】
类型
一、平行线的定义及表示
1.下列叙述正确的是()
A.两条直线不相交就平行
B.在同一平面内,不相交的两条线叫做平行线
C.在同一平面内,不相交的两条直线叫做平行线
D.在同一平面内,不相交的两条线段叫做平行线
【答案】C
【解析】在同一平面内两条直线的位置关系是不相交就平行,但在空间就不一定了,故A选项错;平行线是在同一平面内不相交的两条直线,不相交的两条曲线就不是平行线,故B选项错;平行线是针对两条直线而言.不相交的两条线段所在的直线不一定不相交,故D选项错.
【总结升华】本例属于对概念的考查,应从平行线的概念入手进行判断. 举一反三: 【变式】在同一平面内,不重合的两条直线的位置关系有()
A.平行或垂直B.平行或相交C.垂直或相交D.平行、垂直或相交
【答案】B
类型
二、平行公理及推论
2.下列说法中正确的有()
①一条直线的平行线只有一条;②过一点与已知直线平行的直线只有一条;③因为a∥b,c∥d,所以a∥d;④经过直线外一点有且只有一条直线与已知直线平行.
A.1个B 2个C.3个D.4个
【答案】 A
【解析】一条直线的平行线有无数条,故①错;②中的点在直线外还是在直线上位置不明确,所以②错,③中b与c的位置关系不明确,所以③也是错误的;根据平行公理可知④正确,故选A.
【总结升华】本题主要考察的是“平行公理及推论”的内容,要正确理解必须要抓住关键字词及其重要特征,在理解的基础上记忆,在比较中理解.
举一反三:
【变式】直线a∥b,b∥c,则直线a与c的位置关系是.【答案】平行
类型
三、两直线平行的判定
3.(江苏)如图所示,直线a、b被直线c所截,现给出下列四个条件:
①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7,其中能判断a∥b的条件的序号是().A.①②B.①③C.①④D.③④
【思路点拨】根据平行线的判定方法进行判断.
【答案】A
【解析】①由∠1=∠5可推出a∥b,理由是同位角相等,两直线平行.
②∵∠1=∠7,又∠7=∠5,∴∠1=∠5,可推出a∥b.
③∠2+∠3=180°不能推出a∥b.
④∠4=∠7不能推出a∥b.
【总结升华】从题目的结论出发分析所要说明的结论能成立,必须具备的是哪些条件,再看这些条件成立又需具备什么条件,直到追溯到已知条件为止.
举一反三:
【变式1】如图,下列条件中,不能判断直线l1∥l2的是().A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=1800
【答案】B
【高清课堂:平行线及判定例1】
【变式2】已知,如图,BE平分ABC,CF平分BCD,1=2,求证:AB//CD.
【答案】∵ 1=2
∴ 21=22,即∠ABC=∠BCD
∴ AB//CD(内错角相等,两直线平行)
4.如图所示,由(1)∠1=∠3,(2)∠BAD=∠DCB,可以判定哪两条直线平行.
【思路点拨】试着将复杂的图形分解成“基本图形”.
【答案与解析】
解:(1)由∠1=∠3,可判定AD∥BC(内错角相等,两直线平行);
(2)由∠BAD=∠DCB,∠1=∠3得:
∠2=∠BAD-∠1=∠DCB-∠3=∠4(等式性质),即∠2=∠4
可以判定AB∥CD(内错角相等,两直线平行).
综上,由(1)(2)可判定:AD∥BC,AB∥CD.【总结升华】本题探索结论的过程采用了“由因索果”的方法.即在条件下探索由这些条件可推导出哪些结论,再由这些结论推导出新的结论,直到得出结果.
5.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?
【答案与解析】
解:这两条直线平行.理由如下:
如图:
∵ b⊥a,c⊥a
∴ ∠1=∠2=90°
∴b∥c(同位角相等,两直线平行).
【总结升华】本题的结论可以作为两直线平行的判定方法.【高清课堂:平行线及判定例5】
举一反三:
【变式】已知,如图,EFEG,GMEG,1=2,AB与CD平行吗?请说明理由.
【答案】
解:AB∥CD.理由如下:如图:
∵ EFEG,GMEG(已知),∴∠FEQ=∠MGE=90°(垂直的定义).
又∵∠1=∠2(已知),∴∠FEQ-∠1=∠MGE-∠2(等式性质),即∠3=∠4.
∴ AB∥CD(同位角相等,两直线平行).
平行线的判定
《平行线的判定》说课稿今天我说课的内容是新教材浙教版八年级上册《平行线的判定》的第二课时。下面,我将从“教学内容”、“教学目标”、“教学方法及手段”和“教学过程”......
平行线及其判定(二)
数学备课大师 www.eywedu.net 目录式免费主题备课平台!平行线及其判定(二)三维目标1.会判断内错角、同旁内角.2.掌握直线平行的第二种方法和第三种方法及其应用.3.创设情境,激发学生......
平行线的判定
平行线的判定练习精编一.选择题(共30小题) 1.若∠1与∠2是同旁内角,∠1=30°,则()A.∠2=150° B.∠2=30° C.∠2=150°或30° D.∠2的大小不能确定 2.下列说法中可能错误的是()A.过一点有且......
平行线的判定
平行线的判定一、教学目标:知识目标:了解推理、证明的格式.理解平行线判定公理的形成,第一个判定定理的证法.掌握平行线判定公理和第一个判定定理.会用判定公理及第一个判定定理......
平行线的判定__教案_李
5.2.2平行线的判定(1)一、教学目标: 1.知识与技能:(1)从“用三角尺和直尺画平行线的活动过程中发现”同位角相等,两直线平行;培养学生动手操作,主动探究及合作交流的能力。(2)会用平行线......
下一篇:导师对论文的学术评语大全