教学计划对学校的教学、生产劳动、课外活动等作出全面安排,具体规定了学校应设置的学科、课程开设的顺序及课时分配,并对学期、学年、假期进行划分。。范文网的小编精心为您带来了七年级下册数学教学计划优秀9篇,如果对您有一些参考与帮助,请分享给最好的朋友。
篇一:七年级下册数学教学计划 篇一
一、教学目标
1、让学生学到的知识技能是社会对青少年所需求的;
2、要让学生知道这是自己终身学习和发展所需要的;
3、贴近生活实际让学生爱数学,自主的学教学;
4、让学生掌握数学基本知识和技能
二、教材分析:
初一数学七年极(下)要目:
第一章一元一次不等式组
第二章二元一次方程组
第三章平面上直线的位置关系和度量关系
第四章多项式
第五章轴对称图形
第六章数据的分析与比较
课题学习测量不规则图形
课题学习包装盒的分类、设计和制作
该教材每章开始时,都设置了导图与导人语,激发了学生的学习兴趣与求知欲望。在教学中,适当设置如“回忆、思考、探索、概括、做一做、读一读、想一想、试一试”等以及“信息收集,调查研究”等活动栏目,让我们给学生适当的思考空间,从而使学生能更好地自主学习。在教材各块内容间,又穿插安排了涉及数学史料、数学家、实际生活、数学趣题、知识背景、外语教学、信息技术、数学算法等等的阅读材料,用好它,不但扩大了学生知识面,而且增强了学生对数学文化价值的体验与数学的应用意识。该教材练习题更是体现了满足不同层次学生发展的需要。
整个教材体现了如下特点:
1.现代性——更新知识载体,渗透现代数学思想方法,引入信息技术。
2.实践性——联系社会实际,贴近生活实际。
3.探究性——创造条件,为学生提供自主活动、自主探索的机会,获取知识技能。
4.发展性——面向全体学生,满足不同学生发展需要。
5.趣味性——文字通俗,形式活泼,图文并茂,趣味直观。
三、教学措施:
第七章重视一元一次不等式组的解法与应用
注意从学生的生活经验和已有知识出发,创设生动有趣的教学情境
关注学生在学习活动中的情感和态度表现
给学生足够的活动空间,认真实施分层教学
第八章灵活运用代入法或加减法解简单的二元一次方程组
会列出二元一次方程组解简单应用题,并能分析结果
理解解方程组“消元”的思想,领会“转化”的思想
妥善处理学生“主体”与教师“主导”的关系
突出解二元一次方程组通法的教学
加强学生之间的合作学习
注意教材弹性
第九章进一步认识点、线、面、角
了解同一平面上的两条直线的三种关系
初步理解平移的概念
平行与垂直的性质与判定
注重从学生实际出发,注重概念引入多联系实际
尽量利用教具或多媒体设备
保持教材的逻辑体系
注重联系教材的文化背景
第十章了解多项式的的有关概念
能进行简单的多项式的加、减、乘运算
注重联系实际,为将来学函数奠定基础
让课堂内容生动、趣味化,从学生熟悉的背景引出概念
第十一章体会对称之美
利用轴对称进行图案设计,认识和欣赏轴对称在现实中的应用
认识特殊三角形的性质及角平分线、垂直平分线的性质
设计开放性很强的练习,关注学生情感、价值观的培养
关注“局部”与“整体”的教学思维的训练
第十二章紧扣数据,抓住概念本质,紧密联系实际
对平均数、极差、方差的"概念,注意把握教学的层次
让学生自主思考、相互交流,以形成结论
四、课程的教学过程要求我们:
i、课堂教学从:“复习、引入、讲授、巩固、作业”,转变为:“情境——问题——探究——反思——提高”,使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程。
ii、数学课堂由单纯传授知识的殿堂转变为学生主动从事数学活动,构建自己有效的数学理解的场所。
iii、数学教师由单纯的知识传递者转变为学生学习数学的组织者、引导者和合作者。
iv、充分利用现代教育技术增加师生互动、形象化表示数学内容、有效处理复杂的数学运算等。
v、给学生提供成果展示机会,培养学生的交流能力及学习数学的自信心。
五、注意事项
1、要由“单纯传授知识”转变为“既传授知识,又培养学生数学思维方式和能力”;
2、要由“教师主导,学生被动接受知识”转变到“以学生为主体,教师组织引导”;
3、本册内容较传统,但教学方式不可以传统,不要以教师的讲解代替学生的活动;
4、结合具体的教学内容和学生的实际活动创设问题的情境;
5、应当让学生思考自己作出判断,教师先不要作出相关的提示或暗示;
6、应设法让学生参与到“观察、探索、归纳、猜测、分析、论证、应用”的数学活动中来并适当搭造“合作、交流”的平台;
7、重点应落在掌握有关基础知识和技能;
8、要深入钻研,创造性的设计教学过程。
课时安排(教学进度)
第二周2、1二元一次方程组1课时2、2二元一次方程组的解法3课时2、3二元一次方程组的应用1课时
第三周2、3二元一次方程组的应用3课时第二章复习2课时
第四周3、1线段、直线、射线2课时3、2角3课时
第五周3、3平面直线的位置关?3课时3、4图形的平移2课时
第六周3、5平行线的性质与判定5课时
第七周3、6垂线的性质与判定5课时
第八周第三章复习2课时4、1单项式、多项式3课时
第九周4、1合并同类项2课时4.2多项式的加法2课时4.3同底数幂的乘法1课时
第十周
第十一周
第十二周4.3多项式的乘法5课时
第十三周
第十四周4.4乘法公式5课时
第十五周第四章复习2课时5.1轴反射与轴对称图形3课时
第十六周5.2线段的垂直平分线2课时5.3三角形1课时5.4?三角形的内角和2课时
第十七周5.5角平分线的性质1课时5.6等腰三角形3课时5.7等边三角形1课时
第十八周第五章复习2课时6.1加权平均数3课时
第十九周6.2极差、方差5课时
第二十周6.3两组数据的比较1课时第六章复习1课时期考模拟试卷
第二十一周
篇二:最新2024人教版七年级数学下册教案 篇二
七年级数学下册二元一次方程组说课稿
一、说教材分析
1、教材的地位和作用
二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。
2、教学目标
知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。
能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。
情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。
3、重点、 难点
重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。
难点:在实际生活中二元一次方程组的应用。
二、教法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。
三、学法
“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。
四、教学过程
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)复习旧知,温故知新
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分。负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少?
设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2)创设情境,提出问题
这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
胜的场数+负的场数=总场数,
胜场积分+负场积分=总积分。
这两个条件可以用方程
x+y=10
2x+y=16
表示:
上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程。
把两个方程合在一起,写成
x+y=10
2x+y=16
像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
(3)发现问题,探求新知
满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。
x xy
y
上表中哪对x、y的值还满足方程②。
一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。
(4)分析思考,加深理解
通过前面的学习,学生已基本把握了本节所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第 五个环节。
(5)强化训练,巩固双基
课堂练习:
设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识。
练习2:已知下列三对数值:
哪一对是下列方程组的解?
(设计意图:数学教学论指出,数学知识要明确其内涵和外延(条件、结论、应用范围等),通过对二元一次方程组的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
(6)小结归纳,拓展深化
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的指示、方法、体验是那个方面进行归纳,我设计了这个问题:
① 通过本节课的学习,你学会了哪些知识;
(7)布置作业,提高升华
教科书第89页1、第90页第1题。
以作业的巩固性和发展性为出发点,我设计了两个题,不仅是对本节课内容的一个反馈,也是对本节课知识的一个巩固。总的设计意图是反馈教学,巩固提高。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到状态。
五、评价与反思
本节课是在学生学习了一元一次方程基础上进行的,主要是引导学生运用类比思想,依次经过比较、归纳等活动,最终探索出二元一次方程组。下面是关于本节课的几点说明:
1、本节课对教材的内容进行了优化处理,为跳跃较大的知识点作充分的铺垫,密切联系新旧知识,让学生借助已有的知识和方法主动探索新知识,扩大知识结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上,体现了以教师为主导、学生为主体,以思想为导向、知识为载体,以方法为中介、训练为主干,以培养学生的思维能力为中心、操作为动力的教学理念。
2、在课堂教学中为学生提供充分的探索空间,注重引导学生分工合作,独立思考,形成主见并进行交流,创设民主、宽松和谐的课堂气氛,让学生畅所欲言,同时进行实验操作,使课堂教学灵活直观,新鲜有趣,从而使课堂教学实现教学思想的先进性、教学目标的整体性、教学过程的有序性、教学方法的灵活性、教学手段的多样性、教学效果的可靠性。
3、注重量化评价与质怀评价相结合,充分利用课堂观察评价、问题讨论评价、学生自我评价等多元化评价,通过几组习题,将学生水平层次记录在案,为学生的学习评价提供充分的科学依据,从而综合检验学生对数学知识、技能的理解,以及学生在学习数学的过程在情感和态度的形成和发展。
篇三:人教版七年级数学下册教案 篇三
【教学目标】:
1.掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程。
2.发展学生的形象思维能力,和数形结合的意识。
3.用坐标表示平移体现了平面直角坐标系在数学中的应用。
4.培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化。
重点:掌握坐标变化与图形平移的关系。
难点:利用坐标变化与图形平移的关系解决实际问题。
【教学过程】
一、引言
上节课我们学习了用坐标表示地理位置,本节课我们继续研究坐标方法的另一个应用。
二、新
展示问题:教材第75页图。
(1)如图将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出它的坐标,把点A向上平移4个单位
长度呢?
(2)把点A向左或向下平移4个单位长度,观察他们的变化,你能从中发现什么规律吗?
(3)再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?
规律:在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(
,));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(,)).
教师说明:对一个图形进行平移,这个图形上所有点的。坐标都要发生相应的变化;反过来,从图形上的点的坐
标的某种变化,我们也可以看出对这个图形进行了怎样的平移。
例如图(1),三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).
(1)将三角形ABC三个顶点的横坐标后减去6,纵坐标不变,分别得到点A1、B1、C1,依次连接A1、B1、C1各点
,所得三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?
(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2、B2、C2,依次连接A2、B2、C2各点
,所得三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系?
引导学生动手操作,按要求画出图形后,解答此例题。
解:如图(2),所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC向
左平移6个单位长度得到。类似地,三角形A2B2C2与三角形ABC的大小、形状完全相同,它可以看作将三角形ABC
向下平移5个单位长度得到。
课本P77思考题:由学生动手画图并解答。
归纳:
三、练习:教材第78页练习;习题7.2中第1、2、4题。
四、作业布置第78页第3题。
篇四:人教版七年级数学下册教案 篇四
学习目标:
1、能说出平面直角坐标系,以及横轴、纵轴、原点、坐标的概念。会画平面直角坐标系,并能在给定的平面直角坐标系中由点的位置写出它的坐标,以及能根据坐标描出点的位置。
2、知道平面直角坐标系内有几个象限,清楚各象限的点的坐标的符号特点。
3、给出坐标能判断所在象限。
学习重点:
1、在给定的平面直角坐标系内,会根据坐标确定点,根据点的位置写出点的坐标。
2、知道象限内点的坐标符号的特点,根据点的坐标判断其所在象限。
学习难点:
坐标轴上点的坐标的特点。
学习方法:
自主学习合作探究
学习过程:
一自主学习:
1、画一条数轴,在数轴上标出3,—3,0,2
数轴上的点可以用个实数来表示,这个实数叫做___________。
2、思考:直线上的一个点可以用数轴上一个实数来表示点的位置,能不能找到一种办法来确定平面内的点的位置呢?(例如图7.1—3中A、B、C、D各点)。
3、自学课本第66—67页的内容,然后填空。
(1)我们可以在平面内画两条互相_____、_____重合的数轴,组成________________,水平的数轴称为_____轴或_____轴,习惯上取向____为正方向;竖直的数轴称为____轴或____轴,取向___方向为正方向;两坐标轴的交点为平面直角坐标系的`________。
(2)如何确定点的坐标。(阅读课本第66页最后一段)如图7.1—4写出点B、C、D的坐标_______________________。
思考:原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点?
《实数、平面直角坐标系》测试题
1、如果点M到x轴和y轴的距离相等,则点M横、纵坐标的关系是()。
A、相等 B、互为相反数 C、互为倒数 D、相等或互为相反数
2、将某图形的横坐标都减去2,纵坐标不变,则该图形()。
A、向右平移2个单位 B、向左平移2个单位
C、向上平移2个单位 D、向下平移2个单位
《实数、平面直角坐标系》、填空题
1、生活中只要你留心,就会发现有许多用数字“代替”目标位置的现象。
(1)一张电影票上写有“7排9号”,进电影院先找,后找,这是一对有序数对;
(2)一张硬座的火车票“10车厢18号”,上火车时你得先找,再在车厢里找号座位。
2、教室内座位,列数在前,排数在后。如果李小刚的座位是(3,4),则(3,4)意义是。
3、某一本书在印刷上有错别字,在第20页第4行从左数第11个字上,如果用数序表示可记为(20,4,11),你是电脑打字员你认为(100,20,4)的意义是。
4、在电影票上将“10排8号”前记为(10,8),那么(25,11)表示的意义是。
5、小亮家住在3号路,门牌是18号,可记为(3,18),那么小琪家在5号路门牌号是49号,可记为。
篇五:人教版七年级数学下册教案 篇五
在本次活动中,教师应重点关注:
(1)学生从简单的具体实物抽象出相交线、平行线的能力。
(2)学生认识到相交线、平行线在日常生活中有着广泛的应用。
(3)学生学习数学的。兴趣。
教师出示剪刀图片,提出问题。
学生独立思考,画出相应的几何图形,并用几何语言描述。教师深入学生中,指导得出几何图形,并在黑板上画出标准图形。
教师提出问题。
学生分组讨论,在具体图形中得出两条相交线构成四个角,根据图形描述邻补角与对顶角的特征。学生可结合概念特征找到图中的两对邻补角与两对对顶角。
在本次活动中,教师应关注:
(1)学生画出两条相交线的几何图形,用语言准确描述。
(2)学生能否从角的位置关系上对角进行分类。
(3)学生是否能够正确区分邻补角、对顶角。
(4)学生参与数学学习活动的主动性,敢于发表个人观点。
《相交线与平行线》单元测试题
25.如图,直线EF∥GH,点B、A分别在直线EF、GH上,连接AB,在AB左侧作三角形ABC,其中∠ACB=90°,且∠DAB=∠BAC,直线BD平分∠FBC交直线GH于D
(1)若点C恰在EF上,如图1,则∠DBA=_________
(2)将A点向左移动,其它条件不变,如图2,则(1)中的结论还成立吗?若成立,证明你的结论;若不成立,说明你的理由
(3)若将题目条件“∠ACB=90°”,改为:“∠ACB=120°”,其它条件不变,那么∠DBA=_________(直接写出结果,不必证明)
《第五章相交线与平行线》单元测试题
一、选择题(每题3分,共30分)
1、如图1,直线a,b相交于点O,若∠1等于40°,则∠2等于()
A.50°B.60°C.140°D.160°
篇六:人教版七年级数学下册教案 篇六
教学目标:
1.理解有理数的意义。
2.能把给出的有理数按要求分类。
3.了解0在有理数分类中的作用。
教学重点:
会把所给的各数填入它所在的数集图里。
教学难点:
掌握有理数的两种分类。
教与学互动设计:
(一)创设情境,导入新课
讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数。大家讨论一下,到目前为止,你已经认识了哪些类型的数。
(二)合作交流,解读探究
3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…
议一议你能说说这些数的特点吗?
学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数。
说明我们把所有的"这些数统称为有理数。
试一试你能对以上各种类型的数作出一张分类表吗?
有理数
做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试。
有理数
数的集合
把所有正数组成的集合,叫做正数集合。
试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合。
(三)应用迁移,巩固提高
【例1】把下列各数填入相应的集合内:
,3.1416,0,20xx,- ,-0.23456,10%,10.1,0.67,-89
【例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?
有理数有理数
(四)总结反思,拓展升华
提问:今天你获得了哪些知识?
由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法。我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法。
下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?
(五)课堂跟踪反馈
夯实基础
1.把下列各数填入相应的大括号内:
-7,0.125, ,-3 ,3,0,50%,-0.3
(1)整数集合{};
(2)分数集合{};
(3)负分数集合{ };
(4)非负数集合{ };
(5)有理数集合{ }.
2.下列说法中正确的是( )
A.整数就是自然数
B. 0不是自然数
C.正数和负数统称为有理数
D. 0是整数,而不是正数
提升能力
3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?
2
篇七:人教版七年级数学下册教案 篇七
教学目标:
1.掌握数轴三要素,能正确画出数轴。
2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。
教学重点:
数轴的概念。
教学难点:
从直观认识到理性认识,从而建立数轴概念。
教与学互动设计:
(一)创设情境,导入新课
课件展示课本P7的“问题”(学生画图)
(二)合作交流,解读探究
师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴。
【点拨】(1)引导学生学会画数轴。
第一步:画直线,定原点。
第二步:规定从原点向右的方向为正(左边为负方向).
第三步:选择适当的长度为单位长度(据情况而定).
第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处。
对比思考原点相当于什么;正方向与什么一致;单位长度又是什么?
(2)有了以上基础,我们可以来试着定义数轴:
规定了原点、正方向和单位长度的直线叫数轴。
做一做学生自己练习画出数轴。
试一试你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?
讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?
小结整数在数轴上都能找到点表示吗?分数呢?
可见,所有的都可以用数轴上的点表示;都在原点的左边,都在原点的右边。
(三)应用迁移,巩固提高
【例1】下列所画数轴对不对?如果不对,指出错在哪里?
【例2】试一试:用你画的`数轴上的点表示4,1.5,-3,-,0.
【例3】下列语句:
①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数。正确的说法有( )
A.1个B.2个C.3个D.4个
【例4】在数轴上表示-2和1,并根据数轴指出所有大于-2而小于1的整数。
【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为20xxcm的线段AB,则线段AB盖住的整点有( )
A.1998个或1999个B.1999个或20xx个
C.20xx个或20xx个D.20xx个或20xx个
(四)总结反思,拓展升华
数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系。它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想。大家要掌握数轴的三要素,正确画出数轴。提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数。
(五)课堂跟踪反馈
夯实基础
1.规定了、 、的直线叫做数轴,所有的有理数都可从用上的点来表示。
2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是。
3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是( )
A.7 B.-3
C.7或-3 D.不能确定
4.在数轴上,原点及原点左边的点所表示的数是( )
A.正数B.负数
C.不是负数D.不是正数
5.数轴上表示5和-5的点离开原点的距离是,但它们分别表示。
提升能力
6.与原点距离为3.5个单位长度的点有2个,它们分别是和。
7.画出一条数轴,并把下列数表示在数轴上:
+2,-3,0.5,0,-4.5,4,3.
开放探究
8.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点。
9.下列四个数中,在-2到0之间的数是( )
A.-1 B.1 C.-3 D.3
篇八:七年级数学下册教案 篇八
一、学情分析
从上学期的学习中可看出,这批学生对知识掌握程度不一,成绩悬殊较大。有的学生智力较好,自尊心强,好动。有的学生学习目的不明确,纪律涣散。教师要关爱每个学生,建立平等,和谐的师生关系。从本学期开始就应抓紧,抓扎实,重视做学生的思想工作,让学生端正学习及生活的态度,迅速完成从小学到初中的转轨,进入初中阶段的新的学习生活。
二、教学目标
通过义务教育初中阶段七年级数学新课程的学习,学生将在以下几个方面得到发展。
1,获得数学中的基本理论,概念,原理和规律等方面的知识,了解并关注这些知识在生产,生活和社会发展中的应用。学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题来解决实际问题。认识自然界中的各种图形发现它们的广阔的应用。初步体验并学会全理地进行推断和预测。
2,初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维的习惯。
3,理解人与自然,社会的密切关系,和谐发展的意义,提高环境保护意识。
4,初步形成数学的基本观点和科学态度,为确立辨证唯物主义世界观奠定必在的基础。
5,树立学生牢固树立"校兴我荣,校衰我耻"的意识,让学生乐学,爱学,让每一个学生得到全面发展,让学校成为学生的"天堂"。
6,在课堂教学中,渗透思想品德教育,对学生进行爱国主义,集体主义,文明礼貌等的教育。培养学生正确的人生观,学习态度。
三、教材分析
要使学生在知识,能力,情感,态度和价值观等方面全面发展,必须引导学生主动参和体验各种学科探究活动,而不仅仅是被动地学习知识,因此摆脱"以学科为中心"和"知识为中心"的课程观念的`束缚,实现以"学生为中心",以人为本,促进学生实现学习方式的转变,从被动式学习转为主动探究式学习。这是这次教材改革的切入点和突破点,从这点出发,教材在内容的选择和组织上有如下特点:
1,承上启下,立足发展
本书力求成为一面"镜子",反映知识的来龙去脉和思想方法的深刻内涵,不仅引导学生现在的学习,而且对学生今后的学习有所启示,既有使学生了解所学内容背景的历史资料,又有揭示初等数学与高等数学联系的内容,为学生今后的学习作铺垫。
2,体现过程,反映规律
学习数学是循序渐进,由表及里,逐步深入的过程,粗略,定性和直观的认识往往是创新的火种,本书力求在重视知识结论的同时,体现数学学习的过程和规律,从能启发学生的粗略,定性,直观认识的问题说起,通过"观察","思考","探究","讨论","归纳"等,逐步引导出精确,定量,抽象的认识。
3,注重基础,突出重点
现代社会要求学生具有相应的基本数学素养,七年级数学课程应更着重于基础性,普遍性,通用性的内容,本书就是力求注重基础,突出重点。强调解方程中的化归思想,以及消元,配方,降次等基本方法;用框图方式分析问题,体现程序化,机械化,算法化的思维方式;习题设计"复习巩固","综合运用","拓广探索"等不同层次。
4,内容安排
一第五章:相交线与平行线
本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案。
重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用。
难点:探索平行线的条件和特征,平行线条件与特征的区别,运用平移性质探索图形之间的平移关系,以及进行图案设计。
二第六章:平面直角坐标系
本章通过生活中的实例使学生感受到现实生活中的确定位置的重要性。并让学生比较系统地学习"有序数对","平面直角坐标系"的有关内容,最后通过"坐标方法的简单应用"将坐标与地理位置相结合,将图形坐标变化与图形位置变化之间的关系巧妙地结合在一起。本章关键是掌握好"平面直角坐标系"定位法。
重点:在给定的直角坐标系中会根据坐标描出点的位置,由点的位置写出它的坐标。
难点:平面直角坐标系的实际运用。
三第七章:三角形
通过本章的学习,使学生学会适应日常生活和进一步学习所需要的必要的知识和基本技能,进一步培养学生的逻辑思维能力,促进学生运用所学知识解决简单的实际问题的意识,养成这种习惯,培养学生的创新意识和能力。
重点:三角形的有关概念,三角形三边之间的关系,三角形的三个内角之间的关系。
难点:三角形三边之间关系的应用,三角形内角和的应用。
四二元一次方程组
本章通过实例引入二元一次方程,二元一次方程组以及二元一次方程组的概念,培养学生对概念的理解和完整性和深刻性,使学生掌握好二元一次方程组的两种解法。
重点:二元一次方程组的解法,列二元一次方程组解决实际问题。
难点:二元一次方程组解决实际问题
五不等式与不等式组
使学生掌握不等式,不等式的基本性质,不等式的解集同解不等式同理原理,一元一次不等式与一元一次不等式组的解法,实际问题与一元一次不等式和利用不等关系分析比赛等知识。
重点:一元一次不等式的解法及其简单应用。
难点:了解不等式的解集,不等式组的解集,准确利用不等式的基本性质。
六第十章:实数
本章引进了新的运算——开方,从运算中出现的一种新数——无理数,使学生掌握实数的概念及初步知识,平方根,算术平方根和立方根等知识。
重点:平方根和算术平方根的概念和求法
难点:实数的概念。
四、具体措施
1,深钻教材和新课程教学大纲,加强对新课程理念的理解,面向全体学生,提高数学的基本素养。
2,注重组织教学,提高贯彻课程目标的意向性,组织好探究性学习,提高学习质量。
3,真诚的晤对。注重组织教学,坚持鼓励性教学,杜绝放羊式
4,做好学生的思想工作,提高其学习兴趣,做到寓教于乐中,让他们互助互学。
5,及时发现问题,及时补救,针对学生情况,因村施教。重视个别辅导,多开"小灶"。
6,关注学生的处境,需要,感受和已有基础。平等的给予,而不是居高临下的施舍。
7,关爱学生,牢固树立"校兴我荣,校衰我耻"的意识,让学生乐学,爱学,让每一个学生得到全面发展,让学校成为学生的天堂。
8,不体罚,讽刺学生,不把学生逐出课堂。
9,加强家访。全员普访一次,家访率达100%,并认真作好记载,重点学生应多次家访。
10,定期召开家长会,每年一次以上。
五、进度安排
略
篇九:人教版七年级数学下册教案 篇九
平方根教学设计
一、情景引入(复习引入)
1、求下列和数的算术平方根4、9、100、9/16、0.25
2、如果一个数的平方等于9,这个数是多少?
讨论:这样的数有两个,它们是3和-3.注意中括号的作用。
又如:,则x等于多少呢?
二、探索新知
1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根。即:如果=a,那么x叫做a的平方根。
求一个数的平方根的运算,叫做开平方。
例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算。
2、观察:课本P45的图6.1-2.
图6.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质。并根据这个关系说出1,4,9的平方根。
例4求下列各数的平方根。
(1) 100 (2) (3) 0.25
3、按照平方根的概念,请同学们思考并讨论下列问题:
正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?
一个是正数有两个平方根,即正数进行开平方运算有两个结果,一个是负数没有平方根,即负数不能进行开平方运算,符号:正数a的算术平方根可用表示;正数a的负的平方根可用-表示。
例5说出下列各式的意义,并求出它们的值。
归纳:平方根和算术平方根两者既有区别又有联系。区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。
4、堂上练习:课本P46小练习1、2、3
三、归纳小结(学生归纳,老师点评)
1、什么叫做一个数的平方根?
2、正数、0、负数的平方根有什么规律?
3、怎样求出一个数的平方根?数a的平方怎样表示?
四、布置作业
P47-48习题6、1第3、4题。
五、板书设计:
6.1平方根
1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根。即:如果=a,那么x叫做a的平方根。
2、a的平方根记为:
3、平方根的性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
《平方根》同步练习题
1已知第一个正方形纸盒的棱长是6厘米,第二个正方形纸盒的体积比第一个正方形纸盒的体积大127立方厘米,试求第二个正方形纸盒的。棱长。
《6.1平方根》课时练习含答案
1.下面说法正确的是( )
A.4是2的平方根
B.2是4的算术平方根
C.0的算术平方根不存在
D.-1的平方的算术平方根是-1
答案:B
知识点:平方根;算术平方根
解析:
解答:A、4不是2的平方根,故本选项错误;
B、2是4的算术平方根,故本选项正确;
C、0的算术平方根是0,故本选项错误;
D、-1的平方为1,1的算术平方根为1,故本选项错误。
故选B.
分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案。
上一篇:人生职业规划(精选3篇)
下一篇:实习班主任工作总结(最新5篇)