好文档 - 专业文书写作范文服务资料分享网站

比例的基本性质教学设计(热门【精选3篇】

分享 时间: 加入收藏 我要投稿 点赞

作为一无名无私奉献的教育工作者,总不可避免地需要编写教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。优秀的教学设计都具备一些什么特点呢?下面是范文网的小编为您带来的比例的基本性质教学设计(热门【优秀3篇】,您的肯定与分享是对小编最大的鼓励。

篇一:小学六年级数学《比例的基本性质》优秀教案 篇一

【教学内容】

比例的基本性质(教材第41页内容)。

【教学目标】

1、使学生理解比例的基本性质。

2、提高学生观察、计算、发现、验证和总结的能力。

3、在总结比例的基本性质的过程中,使学生感受到探索数学问题的乐趣。

【重点难点】

应用比例的基本性质判断两个比能否组成比例,并正确地组成比例。

【教学准备】

投影仪。

【复习导入】

1、教师提问:什么叫做比例?

2、应用比例的意义,判断哪两个比可以组成比例。

6∶3和8∶50.2∶2.5和4∶50

教师:同学们能正确判断两个比能不能组成比例了,那么比例各部分的名称是什么?

【新课讲授】

1、教学比例各部分的名称。

引导学生自学教材第41页第1行、第2行的内容。

教师板书:2.4∶1.6=60∶40

指名让学生指出板书的比例的外项、内项。随着学生的回答教师接着板书:

学生认一认,说一说比例中的外项和内项。

2、探究比例的基本性质。

教师:我们知道了比例的各部分的名称,那么比例有什么性质呢?现在我们就来探究一下。

教师板书:比例的基本性质。

组织学生观察组成比例的两个内项和两个外项,并探究它们的关系。

学生小组内交流。指名汇报,学生可能会说:两个外项的积是2.4×40=96,两个内项的积是1.6×60=96,两个内项的积等于两个外项的积。

验证其他的比例有没有这个规律,举例说明,检验发现。如:∶0.5=1.2∶,两个外项的积是×=0.6,两个内项的积是0.5×1.2=0.6。外项的积等于内项的积。

如果把比例改成分数形式呢?如:=,3×15=5×9。等号两边的分子和分母分别交叉相乘,所得的积相等。

教师:这个规律叫做比例的基本性质。引导学生说一说,比例的基本性质是什么?组织学生小组交流、汇报。教师补充:在比例里,两个外项之积等于两个内项之积,这叫做比例的基本性质。学生齐读两遍。

3、应用比例的基本性质,判断哪两个比可以组成比例。

6∶3和8∶50.2∶2.5和4∶50

组织学生在小组中互相交流,然后指名汇报。

4、教师:到现在为止,我们学习了判断两个比能否组成比例有几种方法?

学生讨论交流后,指名回答。

教师小结:两种方法:看两个比的比值是否相等;两个比的两个外项之积是否等于两个比的内项之积。

【课堂作业】

教材第41页“做一做”。组织学生独立思考,指名说一说,全班集体订正。

【课堂小结】

通过这节课的学习,你有哪些收获?

【课后作业】

1、教材第43页练习八第5题。

2、完成练习册中本课时的练习。

答案:(1)不可以组成比例;(2)可以组成比例;(3)可以组成比例;(4)不可以组成比例

第2课时比例的基本性质

在比例里,两个外项之积等于两个内项之积。这叫做比例的基本性质。

篇二:《比例的基本性质》教学设计 篇二

教材分析:

比例的知识是人教版第三单元第二课时的内容,也是本单元的基础知识。在日常生活中有广泛的应用,这部分知识是在学习了比的知识和除法、分数、比例的意义基础上教学的。本节课内容主要属于概念教学,是解比例的基础,和进行正、反比例教学的关键,是利用比例知识解决实际问题的先决条件,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。

学情分析:

这部分内容是在学生初步理解比例意义的基础上教学的。通过教学,使学生认识比例的内项和外项,探索并掌握比例的基本性质,学会应用比例的基本性质解比例。六年级学生已初步形成了一定的观察、探索、归纳的能力。本班学生对比例的意义以及比例的性质已经有了一定的知识基础,同时学生对这一知识点的学习兴趣比较高,因此可以组织学生自主学习,提高学生学习的主动性。但又个别学生理解能力和数学基础知识比较差,因此在教学中要关注这部分人群。

教学目标:

1、 使学生进一步理解比例的意义,懂得比例各部分名称。理解并掌握比例的基本性质。

2、 能够运用比例的意义和比例的性质判断两个比能否组成比例,并会组比例。

3、 能够运用所学知识解决实际问题,提高解决问题的能力。

4、 在学习中,引导学生通过观察、比较、分析、计算、交流探索新知。

教学重难点:

掌握比例的基本性质,发现并概括出比例的基本性质。引导观察比例中的内、外项的关系。

教学过程:

一、 旧知铺垫

1、 什么叫做比例?

2、 应用比例的意义判断下面的比能否组成比例,并说出判断方法。

1/3∶1/4和12∶9; 1∶5和0.8∶4;

7∶4和5∶3; 80∶2和200∶5

根据学生的判断说出组成比例的方法。

3、 通过师生能否组成比例的比赛诱发学生的思考:还能有什么方法判断能否组成比例?

(设计意图:教师教学应该以学生的认知发展水平和已有的经验为基础,并激发学生求知的欲望。)

二、 探索新知:

1、 比例各部分的名称。

① 提问:我们每个人都名字,那我们的比例有没有名称呢?

② 自学课本,全部齐读。

(培养阅读文本的能力,加深对数学概念的文本理解。)

③ 出示各种不同的比例,让学生说出比例各部分的名称。并检查学生的自学情况,及时给予纠正。(学生行为:大部分都能说出比例的各部分名称,但个别的还是存在问题。)

(设计意图:检查学生的自学情况,并给予及时纠正)

2、 比例的基本性质

① 通过观察、分析、计算等方法,学生独立探索其中的规律。

② 与同桌互相交流自己的发现。

③ 汇报自己的发现,全班交流总结。

④ 举例说明,检验发现。

如:4∕5:0.5=1.2:3∕4 → 4∕5×3∕4=0.5×1.2

2.4∕1.6=60∕40 → 2.4×40=1.6×60

学生行为:学生认真观察、计算,并能够探索,学习的积极性较高。

设计意图:这环节的学习能够充分的体现学生学习的主动性,让学生在观察、计算中找到规律,并与他人分享,培养合作意识。

三、总结

在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。全部齐读 明确和牢记比例的基本性质。

四、巩固练习

在( )里填上合适的数。

5:3=( ):4 12:( )=( ):5

1、做一做:完成课文中的“做一做”。

2、课堂小结。

3、完成课文练习4—6题。

学生行为:独立完成练习 设计意图:巩固和检验学习的成果

板书设计

80 : 2 = 200 : 5

↓ ↓ ↓ ↓

外项 内项 内项 外项

4∕5:0.5=1.2:3∕4 → 4∕5×3∕4=0.5×1.2

2.4∕1.6=60∕40 → 2.4×40=1.6×60

在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

学习活动评价设计

评价1、在本节课的教学中我采用了师评、互评相结合的评价方式,我注重对学生的自学能力,语言表达能力以及学习热情能力的评价,我想以此来发挥评价的激励作用。

评价2、这个环节主要是再次把学习的主权交给学生,让学生在回忆过程中更清楚地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补助,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。让学生在评价中对自己充满信心,是评价成他们发展的动力。

教学反思

这节课在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而且在知识点的获取时,让学生自主观察发现,分析比较,概括出比例的基本性质,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

但是上完之后,我总觉得:学生掌握得不是很好,尤其是根据比例的基本性质写出比例,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。

篇三:比例的基本性质教学设计 篇三

【教材分析】

《比例的基本性质》这节课在学生理解比例的意义的基础上教学的,为下节课教学解比例打下基础。教材直接以比例“2.4:1.6=60:40”教学比例各项的名称,即什么叫做比例的项,什么是比例的內项,什么是比例的外项。引导学生计算两个外项的积和两个内项的积,并追问“如果把比例改写成分数形式,等号两边的分子和分母分别交叉相乘,所得的积有什么关系?”即呈现:

“2.4×40○1.6×60”。在此基础上,发现规律,揭示比例的基本性质。“做一做”教学利用比例的基本性质判断两个比能否组成比例的方法。个人认为这样的材料呈现方式至少存在两个弊端:

(1)例题缺乏意义和挑战性,不能激发学生的思考欲望;

(2)没有给学生想想的猜想和验证的空间。

【教学目标】

1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2、通过观察、猜测、举例验证归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

【教学重点】探索并掌握比例的基本性质。

【教学难点】判断两个比能否组成比例,根据乘法等式写出正确的比例。

【教学设想】:

1、教学情境的呈现

创设有意义的、富有挑战性的学习情境,就好比创建了一个充满引力的磁场,将对学生产生巨大的吸引力,激发学生的学习主动性和积极性,实现课堂教学的“轻负高效”,增加课堂教学的厚度。为此,在准备这节课时,我对情境的创设有如下考虑:简单却能为学生提供思考的空间。

教材中直接呈现比例“2.4:1.6=60:40”,并跟进两个填空:两个外项的积是(),两个內项的积是(),从而得出结论:在比例中,两个外项的积等于两个內项的积,这叫做比例的基本性质。个人认为这样的情境太直接,牵住学生的思维走,没有提供可探究的空间。为此,我简单创设了这样一个情境:老师这里有一个比例“12∶□=□∶2”,不过它的两个内项看不清了,想一想,这两个内项可能是哪两个数?这个问题简单却开放,答案不唯一,为学生的思考打开了空间,同时学生可以通过求比值的方法解决:先填进一个数,然后就出比值,再确定另一个数。只要老师有意识的把学生的回答有序板书,可以达到引导有序思考的作用。

2、教学方式的选择

教育的真谛应该是促进人的发展,人的`发展当然需要积累一定量的基础知识,更重要的是思维水平的提升和分析问题、解决问题能力的发展。我们的课堂教学要引领学生掌握知识,更要侧重引领学生经历知识的形成过程,让学生在探索知识形成过程的学习中,不断拓展思维的宽度和增加思维的厚度。

比例的基本性质本身并没有难度,难在通过观察、猜测、验证、归纳等数学活动探索“在比例中,两个外项的积等于两个內项的积”这个结论的形成过程。我想,这个探究过程应该就是一个合作、探究学习的过程吧。只有当学生经历了这个探究式学习过程,才有可能真正体验思考与合作的成就感,才能真正激发学生对数学的学习兴趣。

3、练习的设计

(1)判断下面哪组中的两个比可以组成比例。旨在巩固对比例基本性质的掌握,应用比例的基本性质解决问题,渗透假设、验证的解决问题方法,假设两个比能组成比例,然后根据比例的基本性质,分别算出两个外项和两个內项的积。补问引出求比值的方法判断两个比能否组成比例,追问引领学生对求比值判断两个比能否组成比例和用比例的基本性质判断两个比能否组成比例的方法进行比较优化,凸显了比例基本性质的应用价值。

(2)根据乘法等式“2×9=3×6”写比例。既是对比例基本性质的逆用,又旨在渗透有序思考的解决问题策略和方法。

(3)如果a×2=b×4,则a:b=():(),旨在将比例的基本性质逆用推广到一般。追问:如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?旨在激发学生的思维矛盾,引领学生打破思维定势,体验变与不变的思想。那么a、b还可能是多少?你发现了什么?旨在引导学生经历一个列举、归纳的过程,提升思维水平。

(4)猜猜我是谁?6:()=5:4,旨在应用比例的基本性质时,渗透方程思想,为解比例的学生作铺垫。

【教学预设】

一、认识比例各部分的名称

1、呈现:4:5和8:10

(1)认识吗?叫什么?

(2)正确吗?为什么?(4:5=0.8,8:10=0.8,所以4:5=8:10)

(3)求比值,判断两个比能否组成比例。

2、介绍比例各部分的名称

4:5=8:10中,组成比例的四个数“4、5、8、10”叫做这个比例的项。两端的两项“4和10”叫做比例的外项。中间的两项“5和8”叫做比例的內项。

3、你能说出下面比例的内项和外项各是多少吗?

(1)1.4:=:5(2)=

二、探究比例的基本性质

1、猜数

呈现比例“12∶□=□∶2”。

(1)想一想,这两个内项可能是哪两个数?如1和24,2和12,……

(2)这样的例子举得完吗?

2、猜想

仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积”;两个內项的位置可以交换……)

3、验证

(1)是不是所有的比例都有这样的规律呢,有什么好办法?

(2)你觉得应该怎样举例呢?

(3)合作要求

1)前后4个同学为一个小组;

2)每个同学写出一个比例,小组内交换验证。

3)通过举例验证,你们能得出什么结论?

4、小结

(1)老师这里也有一个比例3:5=4:6,为什么两个外项的积不等于两个內项的积?

221381
领取福利

微信扫码领取福利

微信扫码分享