好文档 - 专业文书写作范文服务资料分享网站

八年级上册数学知识点一次函数优秀3篇

分享 时间: 加入收藏 我要投稿 点赞

经验是数学的基础,问题是数学的心脏,思考是数学的核心,发展是数学的目标,思想方法是数学的灵魂。这次漂亮的小编为您带来了八年级上册数学知识点一次函数优秀3篇,希望可以启发、帮助到大家。

篇一:八年级上册数学知识点一次函数 篇一

一次函数

1、函数

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

2、自变量取值范围

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

3、函数的三种表示法及其优缺点

关系式(解析)法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

图象法

用图象表示函数关系的方法叫做图象法。

4、由函数关系式画其图像的一般步骤

列表:列表给出自变量与函数的一些对应值。

描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。

连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

5、正比例函数和一次函数

①正比例函数和一次函数的概念

一般地,若两个变量x,y间的关系可以表示成y=kx+b (k,b为常数,k不等于 0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数y=kx+b中的b=0时(k为常数,k 不等于0),称y是x的正比例函数。

②一次函数的图像:

所有一次函数的图像都是一条直线。

③一次函数、正比例函数图像的主要特征

④正比例函数的性质

一般地,正比例函数 有下列性质:

当k>0时,图像经过第一、三象限,y随x的增大而增大;

当k<0时,图像经过第二、四象限,y随x的增大而减小。

⑤一次函数的性质

一般地,一次函数 有下列性质:

当k>0时,y随x的增大而增大;

当k<0时,y随x的增大而减小。

⑥正比例函数和一次函数解析式的确定

确定一个正比例函数,就是要确定正比例函数定义式y=kx(k 不等于0)中的常数k。

确定一个一次函数,需要确定一次函数定义式y=kx+b(k 不等于0)中的常数k和b。解这类问题的一般方法是待定系数法。

⑦一次函数与一元一次方程的关系

任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k≠0)的形式。而一次函数解析式形式正是y=kx+b(k、b为常数,k≠0)。当函数值为0时,即kx+b=0就与一元一次方程完全相同。

结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式。所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值。

从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值。

篇二:经常复习反思作用 篇二

在初中数学学习过程中,要有一个清醒的复习意识,逐渐养成良好的复习习惯,从而逐步学会学习。数学复习应是一个反思性学习过程。要反思对所学习的知识、技能有没有达到课程所要求的程度;要反思学习中涉及到了哪些数学思想方法等等,要反思自己的错误,找出产生错误的原因,订出改正的措施,只有经常复习,才能牢固掌握知识点,复习是一个重要而又有效的学习方法。

篇三:数学的意义与价值 篇三

数学是研究数量、结构、变化以及空间模型等概念的一门古老而常新的学科,是由计数、计算、量度和对物体形状及运动的观察中产生的。数学的发生和发展经过了漫长的历史阶段,它具有精确性、抽象性、严格性、广泛性等特点,其中抽象是数学与生俱来的特征,导致了它的深邃和睿智。

数学已经一百多个分支,数学的应用已深入到自然科学、技术科学和社会人文科学的各个领域,以及社会生活的各个方面。基础数学的知识与运用更是个人与团体生活中不可或缺的一部分。

数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展。

221381
领取福利

微信扫码领取福利

微信扫码分享