好文档 - 专业文书写作范文服务资料分享网站

高中数学水平考复习知识点

天下 分享 时间: 加入收藏 我要投稿 点赞

学任何一门功课,都不能只有三分钟热度,而要一鼓作气,天天坚持,久而久之,不论是状元还是伊人,都会向你招手。下面就是小编给大家带来的高中数学学业水平考知识点,希望能帮助到大家!

高中数学学业水平考知识点1

数学函数区间的概念

(1)函数区间的分类:开区间、闭区间、半开半闭区间

(2)无穷区间

5.映射

一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)”

对于映射f:A→B来说,则应满足:

(1)函数A中的每一个元素,在函数B中都有象,并且象是的;

(2)函数A中不同的元素,在函数B中对应的象可以是同一个;

(3)不要求函数B中的每一个元素在函数A中都有原象。

6.高中数学函数之分段函数

(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

补充:复合函数

如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。

高中数学学业水平考知识点2

1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.

2.在应用条件时,易A忽略是空集的情况

3.你会用补集的思想解决有关问题吗?

4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?

5.你知道“否命题”与“命题的否定形式”的区别.

6.求解与函数有关的问题易忽略定义域优先的原则.

7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.

8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.

9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.

10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法

高中数学学业水平考知识点3

1、导数的定义:在点处的导数记作.

2.导数的几何物理意义:曲线在点处切线的斜率

①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。

3.常见函数的导数公式:

4.导数的四则运算法则:

5.导数的应用:

(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;

注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:

①求导数;

②求方程的根;

③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;

(3)求可导函数值与最小值的步骤:

ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

高中数学学业水平考知识点4

等差数列

对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。

那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:

将以上n-1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n-1个d,如此便得到上述通项公式。

此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。

值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。

等比数列

对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。

那么,通项公式为(即a1乘以q的(n-1)次方,其推导为“连乘原理”的思想:

a2=a1_q,

a3=a2_q,

a4=a3_q,

````````

an=an-1_q,

将以上(n-1)项相乘,左右消去相应项后,左边余下an,右边余下a1和(n-1)个q的乘积,也即得到了所述通项公式。

此外,当q=1时该数列的前n项和Tn=a1_n

当q≠1时该数列前n项的和Tn=a1_(1-q^(n))/(1-q).

高中数学学业水平考知识点5

反比例函数

形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:

反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

如图,上面给出了k分别为正和负(2和-2)时的函数图像。

当K>0时,反比例函数图像经过一,三象限,是减函数

当K<0时,反比例函数图像经过二,四象限,是增函数

反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

知识点:

1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

221381
领取福利

微信扫码领取福利

微信扫码分享