中考数学模拟试题及答案解析(2)
第I卷(选择题)
评卷人 得分 一、单选题
1.﹣2的绝对值是( ) A. 2 B. ﹣2 C.
11 D. ? 222222.下列运算正确的是( )
A. a?a?a B. ?a?b??a?b C. ?a336?3?2?a6 D. a12?a2?a6
3.如图是某几何体的三视图,这个几何体是( )
A. 圆锥 B. 长方体 C. 圆柱 D. 三棱柱
4.一组数据2,3,5,4,4的中位数和平均数分别是( ) A. 4和3.5 B. 4和3.6 C. 5和3.5 D. 5和3.6
5.某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是( )
A. 两点之间线段最短 B. 两点确定一条直线
C. 垂线段最短 D. 经过直线外一点,有且只有一条直线与这条直线平行
6.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是( )
第 1 页 共 17 页
A. 以点F为圆心,OE长为半径画弧 B. 以点F为圆心,EF长为半径画弧 C. 以点E为圆心,OE长为半径画弧 D. 以点E为圆心,EF长为半径画弧
7.小明到商店购买“五四青年节”活动奖品,购买20只铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元,设每支铅笔x元,每本笔记本y元,则可列方程组( ) A. {20x?30y?11020x?10y?110 B. {
10x?5y?8530x?5y?855x?20y?110 D. {
30x?10y?8510x?30y?8520x?5y?110C. {8.在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为( )
A. 84株 B. 88株 C. 92株 D. 121株
9.对于二次函数y?x?2mx?3,下列结论错误的是( ) A. 它的图象与x轴有两个交点 B. 方程x2?2mx?3的两根之积为﹣3
C. 它的图象的对称轴在y轴的右侧 D. x<m时,y随x的增大而减小 10.如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:
①AM=AD+MC;②AM=DE+BM;③DE2=AD?CM;④点N为△ABM的外心.其中正确的个数为( )
2
A. 1个 B. 2个 C. 3个 D. 4个
第II卷(非选择题)
第 2 页 共 17 页
评卷人 得分 二、填空题
11.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为______.
12.“抛掷一枚质地均匀的硬币,正面向上”是______事件(从“必然”、“随机”、“不可能”中选一个).
13.如图,已知AB是⊙O的弦,半径OC垂直AB,点D是⊙O上一点,且点D与点C位于弦AB两侧,连接AD、CD、OB,若∠BOC=70°,则∠ADC=______度.
14.(2017湖北省随州市)在△ABC在,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=______时,以A、D、E为顶点的三角形与△ABC相似.
15.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为______.
16.在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发25h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是______7(填写所有正确结论的序号).
第 3 页 共 17 页
评卷人 得分 ?2三、解答题
0?1?17.计算: ????2017?????3???3?2??2.
18.解分式方程:
3x. ?1?2x?xx?1k3的图象于点B,AB=. x219.如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y?(1)求反比例函数的解析式;
(2)若P(x1, y1)、Q(x2, y2)是该反比例函数图象上的两点,且x1?x2时, y1?y2,指出点P、Q各位于哪个象限?并简要说明理由.
20.风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
21.某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分),A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100.并绘制出如图两幅不完整的统计图.
第 4 页 共 17 页
请根据图中信息,解答下列问题:
(1)参加初赛的选手共有 名,请补全频数分布直方图;
(2)扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少? (3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.
22.如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.
(1)求证:AD平分∠BAC;
(2)若CD=1,求图中阴影部分的面积(结果保留π).
23.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;
(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?
(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?
24.如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.
(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点. 下面是两位学生有代表性的证明思路:
第 5 页 共 17 页