∴在飞行过程中,小球从飞出到落地所用时间是4s; (3)y=﹣5x2+20x=﹣5(x﹣2)2+20, ∴当x=2时,y取得最大值,此时,y=20,
答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.
【点评】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.
24.(13分)如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1,(1)求图象过点B的反比例函数的解析式; (2)求图象过点A,B的一次函数的解析式;
(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.
).
【分析】(1)由C的坐标求出菱形的边长,利用平移规律确定出B的坐标,利用待定系数法求出反比例函数解析式即可;
(2)由菱形的边长确定出A坐标,利用待定系数法求出直线AB解析式即可; (3)联立一次函数与反比例函数解析式求出交点坐标,由图象确定出满足题意x的范围即可.
【解答】解:(1)由C的坐标为(1,∵菱形OABC,
∴BC=OC=OA=2,BC∥x轴, ∴B(3,
),
),得到OC=2,
设反比例函数解析式为y=, 把B坐标代入得:k=3
,
1 / 1
则反比例解析式为y=;
(2)设直线AB解析式为y=mx+n, 把A(2,0),B(3,解得:
,
x﹣2,
,即一次函数与反比例函数交点坐标为(3,
)或(﹣
;
)代入得:
,
则直线AB解析式为y=(3)联立得:解得:1,﹣3
或),
则当一次函数的图象在反比例函数的图象下方时,自变量x的取值范围为x<﹣1或0<x<3.
【点评】此题考查了待定系数法求反比例函数解析式与一次函数解析式,一次函数、反比例函数的性质,以及一次函数与反比例函数的交点,熟练掌握待定系数法是解本题的关键.
25.(13分)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点. (1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF; (2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.
【分析】(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF;
(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、
1 / 1
BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA(ASA),再根据全等三角形的性质即可得出BE=AF. 【解答】(1)证明:连接AD,如图①所示. ∵∠A=90°,AB=AC,
∴△ABC为等腰直角三角形,∠EBD=45°. ∵点D为BC的中点, ∴AD=BC=BD,∠FAD=45°.
∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°, ∴∠BDE=∠ADF. 在△BDE和△ADF中,∴△BDE≌△ADF(ASA), ∴BE=AF;
(2)BE=AF,证明如下: 连接AD,如图②所示. ∵∠ABD=∠BAD=45°, ∴∠EBD=∠FAD=135°.
∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°, ∴∠EDB=∠FDA. 在△EDB和△FDA中,∴△EDB≌△FDA(ASA), ∴BE=AF.
, ,
1 / 1
【点评】本题考查了全等三角形的判定与性质、等腰直角三角形、补角及余角,解题的关键是:(1)根据全等三角形的判定定理ASA证出△BDE≌△ADF;(2)根据全等三角形的判定定理ASA证出△EDB≌△FDA.
26.(14分)如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B. (1)当x=2时,求⊙P的半径;
(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;
(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到 点A 的距离等于到 x轴 的距离的所有点的集合.
(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.
【分析】(1)由题意得到AP=PB,求出y的值,即为圆P的半径;
(2)利用两点间的距离公式,根据AP=PB,确定出y关于x的函数解析式,画出函数图象即可;
(3)类比圆的定义描述此函数定义即可;
(4)画出相应图形,求出m的值,进而确定出所求角的余弦值即可. 【解答】解:(1)由x=2,得到P(2,y),
1 / 1
连接AP,PB, ∵圆P与x轴相切, ∴PB⊥x轴,即PB=y, 由AP=PB,得到解得:y=, 则圆P的半径为;
(2)同(1),由AP=PB,得到(x﹣1)2+(y﹣2)2=y2, 整理得:y=(x﹣1)2+1,即图象为开口向上的抛物线, 画出函数图象,如图②所示;
(3)给(2)中所得函数图象进行定义:此函数图象可以看成是到点A的距离等于到x轴的距离的所有点的集合; 故答案为:点A;x轴;
(4)连接CD,连接AP并延长,交x轴于点F, 设PE=a,则有EF=a+1,ED=∴D坐标为(1+
,a+1),
, =y,
代入抛物线解析式得:a+1=(1﹣a2)+1, 解得:a=﹣2+
或a=﹣2﹣
(舍去),即PE=﹣2+
,
在Rt△PED中,PE=则cos∠APD=
=
﹣2,PD=1, ﹣2.
【点评】此题属于圆的综合题,涉及的知识有:两点间的距离公式,二次函数的图象与性质,圆的性质,勾股定理,弄清题意是解本题的关键.
1 / 1