2018年山东省滨州市中考数学试卷(解析版)
一、选择题(本大题共12小题,每小题3分,共36分) 1.(3分)在直角三角形中,若勾为3,股为4,则弦为( ) A.5
B.6
C.7
D.8
【分析】直接根据勾股定理求解即可.
【解答】解:∵在直角三角形中,勾为3,股为4, ∴弦为故选:A.
【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
2.(3分)若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为( )
A.2+(﹣2) B.2﹣(﹣2) C.(﹣2)+2
D.(﹣2)﹣2
=5.
【分析】根据数轴上两点间距离的定义进行解答即可. 【解答】解:A、B两点之间的距离可表示为:2﹣(﹣2). 故选:B.
【点评】本题考查的是数轴上两点间的距离、数轴等知识,熟知数轴上两点间的距离公式是解答此题的关键.
3.(3分)如图,直线AB∥CD,则下列结论正确的是( )
A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°
【分析】依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.
【解答】解:如图,∵AB∥CD,
1 / 1
∴∠3+∠5=180°, 又∵∠5=∠4, ∴∠3+∠4=180°, 故选:D.
【点评】本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.
4.(3分)下列运算:①a2?a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为( ) A.1
B.2
C.3
D.4
【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可. 【解答】解:①a2?a3=a5,故原题计算错误; ②(a3)2=a6,故原题计算正确; ③a5÷a5=1,故原题计算错误; ④(ab)3=a3b3,故原题计算正确; 正确的共2个, 故选:B.
【点评】此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.
5.(3分)把不等式组正确的为( ) A.
D.
B.
1 / 1
中每个不等式的解集在同一条数轴上表示出来,
C.
【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集. 【解答】解:解不等式x+1≥3,得:x≥2, 解不等式﹣2x﹣6>﹣4,得:x<﹣1, 将两不等式解集表示在数轴上如下:
故选:B.
【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.
6.(3分)在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为( ) A.(5,1) B.(4,3) C.(3,4) D.(1,5)
【分析】利用位似图形的性质,结合两图形的位似比进而得出C点坐标. 【解答】解:∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,
∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半, 又∵A(6,8),
∴端点C的坐标为(3,4). 故选:C.
【点评】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.
7.(3分)下列命题,其中是真命题的为( )
A.一组对边平行,另一组对边相等的四边形是平行四边形 B.对角线互相垂直的四边形是菱形 C.对角线相等的四边形是矩形
1 / 1
D.一组邻边相等的矩形是正方形
【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【解答】解:A、例如等腰梯形,故本选项错误;
B、根据菱形的判定,应是对角线互相垂直的平行四边形,故本选项错误; C、对角线相等且互相平分的平行四边形是矩形,故本选项错误; D、一组邻边相等的矩形是正方形,故本选项正确. 故选:D.
【点评】本题主要考查平行四边形的判定与命题的真假区别.正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,难度适中.
8.(3分)已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧长为( ) A.
B.
C.
D.
的
【分析】根据圆周角定理和弧长公式解答即可. 【解答】解:如图:连接AO,CO,
∵∠ABC=25°, ∴∠AOC=50°, ∴劣弧
的长=
,
故选:C.
【点评】此题考查三角形的外接圆与外心,关键是根据圆周角定理和弧长公式解答.
1 / 1
9.(3分)如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为( ) A.4
B.3
C.2
D.1
【分析】先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.
【解答】解:根据题意,得:解得:x=3,
则这组数据为6、7、3、9、5,其平均数是6,
所以这组数据的方差为×[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)
2]=4,
=2x,
故选:A.
【点评】此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.
10.(3分)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则 ①二次函数的最大值为a+b+c; ②a﹣b+c<0; ③b2﹣4ac<0;
④当y>0时,﹣1<x<3,其中正确的个数是( )
A.1 B.2 C.3 D.4
【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.
【解答】解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向
1 / 1