(5)简述配筋率对受弯构件正截面承载力、挠度和裂缝宽度的影响。
配筋率越高,受弯构件正截面承载力越大,最大裂缝宽度值越小,但配筋率的提高对减小挠度的效果不明显
2. 斜截面受剪构件——无腹筋梁斜拉受剪破坏试验设计。
大量试验结果表明:无腹筋梁斜截面受剪破坏的形态取决于剪跨比λ的大小,大致有斜拉破坏、剪压破坏和斜压破坏三种主要破坏形态。图1画出了两个对称荷载作用下,λ=2、1、
位移计时的主拉应力迹线(虚线)和主压应力迹线(实线)。由图可见,当λ=
1时,在集中2荷载与支座反力间形成比较陡的主压应力迹线,又由于这时主压应力值比较大,所以破坏主要是由于主压应力产生,称为斜压破坏。当λ=1~2时,主压应力迹线与梁纵轴线的交角接近或小于45°,并且主压应力值与主拉应力值两者相差不很大,因此,破坏形态也就不同。试验研究表明,无腹筋梁斜截面受剪破坏形态主要有以下三种:
1、斜拉破坏:当剪跨比λ>3时,发生斜拉破坏,其破坏特征是:斜裂缝一旦出现就迅速延伸到集中荷载作用点处,使梁沿斜向拉裂成两部分而突然破坏,破坏面整齐、无压碎痕迹,破坏荷载等于或略高于出现斜裂缝时的荷载。斜拉破坏时由于拉应变达到混凝土极限拉应变而产生的,破坏很突然,属于脆性破坏类型。
2、剪压破坏:当剪跨比1≤λ≤3时,发生剪压破坏,其破坏特征是;弯剪斜裂缝出现后,荷载仍可以有较大的增长。随荷载的增大,陆续出现其它弯剪斜裂缝,其中将形成一条主要的些裂缝,称为临界斜裂缝。随着荷载的继续增加,临界斜裂缝上端剩余截面逐渐缩小,最后临界斜裂缝上端集中于荷载作用点附近,混凝土被压碎而造成破坏。剪压破坏主要是由于剩余截面上的混凝土在剪应力、水平压应力以及集中荷载作用点处竖向局部压应力的共同
作用而产生,虽然破坏时没有像斜拉破坏时那样突然,但也属于脆性破坏类型。与斜拉破坏相比,剪压破坏的承载力要高。
3、斜压破坏:当剪跨比λ很小(一般λ≤1)时,发生斜压破坏,其破坏特征是:在荷载作用点与支座间的梁腹部出现若干条大致平行的腹剪斜裂缝,随荷载增加,梁腹部被这些斜裂缝分割成若干斜向受压的“短柱体”,最后它们沿斜向受压破坏,破坏时斜裂缝多而密。斜压破坏也很突然,属于脆性破坏类型,其承载力要比剪压破坏高。
3.钢筋混凝土柱——大偏心受压构件破坏试验设计。
1试件设计 1.构件设计
(1)试件设计的依据
为减少“二阶效应”的影响,将试件设计为短柱,即控制l0/h≤5。通过调整轴向力的作用位置,即偏心距e0,使试件的破坏状态为小偏心受压破坏。 (2)试件的主要参数
①试件尺寸(矩形截面):b×h×l = 124×120×899mm ②混凝土强度等级:C20 ③纵向钢筋:对称配筋412 ④箍筋:Φ6@100(2)
⑤纵向钢筋混凝土保护层厚度:15mm ⑥试件的配筋情况(如下页图所示)
4双向钢丝网2片 尺寸170x903 8@503 8@5050135120016φ124φ12120224 6@1005008704φ122001355015020050 8@50120 8@50 6@1001203 8@503 8@501-12-212080200 4双向钢丝网2片 尺寸170x90柱试件立面图 ⑦取偏心距e0:100mm
图1.3大偏心受压柱配筋图
2、加载装置和量测内容 1 加载装置
柱偏心受压试验的加载装置如图所示。采用千斤顶加载,支座一端为固定铰支座,另一 端为滚动铰支座。铰支座垫板应有足够的刚度,避免垫板处混凝土局压破坏。
Pe0e0
图1.4.1 柱偏心受压试验加载装置
P2 加载方式
(1)单调分级加载机制
实际的加载等级为0-10kN-20kN-30kN-40kN-50kN-60kN-破坏
3量测内容
(1)混凝土平均应变
由布置在柱内部纵筋表面和柱混凝土表面上的应变计测量,混凝土应变测点布置如下图。
360
8701234150
位移计3030153603015
图1.4.3大偏心受压柱试验混凝土应变测点布置
(2)纵筋应变
由布置在柱内部纵筋表面的应变计量测,钢筋应变测点布置如下图。
385应变片共计8片1203应变片共计8片31008701203853-3200图1.4.3.1大偏心受压柱试验纵向钢筋应变测点布置
(3)侧向挠度
柱长度范围内布置5 个位移计以测量柱侧向挠度,侧向挠度测点布置如下图。
870385支杆50
位移计5
位移计6385位移计750
图1.4.3.2大偏心受压柱试验侧向挠度测点布置
(4)裂缝
试验前将柱四面用石灰浆刷白,并绘制50mm×50mm的网格。试验时借助放大镜查找