Chapter-12 - Perovskite-solar-cel - 2019 - Nanomaterials-for-Solar-Cell-Applicat - 图文
CHAPTER12
Perovskitesolarcells
JunmingLi,QiongWangandAntonioAbate
HelmholtzCenterforMaterialsandEnergy,Berlin,Germany
Contents
12.1Introduction
12.2Halideperovskitematerials
12.2.1Structuralproperties
12.2.2Optoelectronicproperties12.3Perovskitesolarcells
12.3.1Ahistoricaloverview12.3.2Devicearchitectures
12.3.3Depositionmethodsofperovskitefilms12.4Characterization
12.4.1Currentàvoltagecharacterization12.4.2Estimationofdevicestability12.5Remainingchallenges
12.5.1Toxicityofperovskitesolarcells
12.5.2Long-termstabilityofperovskitesolarcells12.6SummaryandoutlookReference
417418418420422423424427432432433436436437439440
12.1Introduction
Halideperovskiteswerefirstusedasvisible-lightsensitizersindye-sensitizeliquidjunctionsolarcellswithapowerconversionefficiency(PCE)of3%à4%in2009[1].Halideperovskitesexhibitoutstandingoptoelectronicpropertiesthatmakethistypeofsemiconductorahugesuccessinphotovoltaicapplications[2].Along-termdurableperovskitesolarcell(PSC)withaPCEof9.7%wasreportedin2012.Afterthat,tre-mendousresearchhasbeenconducted,focusingontheoptoelectronicapplicationofhalideperovskitesaswellastheinvestigationoftheabnor-malelectronicpropertiesofthematerials[3].Today,acertifiedPCEof23.3%hasbeenreported,whichiscomparabletosinglecrystallinesilicon
NanomaterialsforSolarCellApplications
DOI:https://doi.org/10.1016/B978-0-12-813337-8.00012-6?2019ElsevierInc.Allrightsreserved.
417
418NanomaterialsforSolarCellApplications
(24.4%)andpolycrystallinesiliconsolarcells(19.9%)[4,5].ThenotableachievementsinPSCsareattributedtothetunablebandgapofperovskites,spanningfrom1.2to2.4eV[6],longchargecarrierdiffusionlength[7],developmentofnewperovskitematerials,andadvancesinperovskitefilmdeposition.Thestabilityofhalideperovskiteshasbeenthemainobstacleforthecommercialization.UnderstandingthedegradationmechanismofPSCsandthedevicearchitecturemaygivetheanswerforthelong-termstabilityinPSCs.Aspresentedinthefollowsection,wewillgiveabriefintroductionaboutthebasicphysicalpropertiesoftheseperovskitematerialsandthesolarcellsbasedonthem.
12.2Halideperovskitematerials12.2.1Structuralproperties
HalideperovskitesadoptthegeneralchemicalformulaofAMX3,whereAistheorganicorinorganiccation,Misthemetal,andXisthehalogen.Thestabilityofthecrystalstructureishighlydependentonthesizeoforganiccationandtheinteractionbetweentheorganiccationandthecorner-sharingMX642octahedral.TheGoldschmidttolerancefactortisareliableempiricalindextopredictwhetherornotastableperovskitestructurecanbeformedorpresented,definedinthefollowingequation:[8]
rA1rX
t5p???2erA1rMT
(12.1)
whererA,andrM,andrXaretheradiioftheorganic/inorganiccation,metalion,andhalideions.Inhalideperovskites,thecellparametersincreaseasthehalidechangesfromchlorine(Cl2,rCl251.81?),bromine(Br2,rBr251.96?)toiodine(I2,rI252.2?).Themostcommonlyusedinorganicororganicmonovalentcationsincludemethylammonium(MA1,rMA151.8?)[9],formamidinium(FA1,rFA151.9à2.2?),rubidium(Rb1,rRb152.9?),andcesium(Cs1,rCs153?)[10à12].ThesuitabledivalentmetalionsbasedonEq.(12.1)includetin(Sn21,rSn2151.1?)andlead(Pb21,rPb2151.19?).Whentequalsto1,itinducesacubicsymmetryandiscomposedofabackboneofacornersharingMX6-octahedralwithcuboctahedravoidsoccupiedbytheA-cation,asshowninFig.12.1.
Mostoftheknownhalideperovskiteshavetvaluesintherangeof0.75à1.00atroomtemperature,withanorthorhombic,rhombohedral,
Perovskitesolarcells419
Figure12.1CubicperovskitestructureofAMX3,whereAcationoccupiesthelatticecorners,Mcationoccupiestheinterstitialsite,andXanionsoccupythelatticefaces.AdaptedfromliteratureG.E.Eperon,etal.,Formamidiniumleadtrihalide:abroadlytun-ableperovskiteforefficientplanarheterojunctionsolarcells,EnergyEnviron.Sci.7(3)(2014)982à988.r2008Wiley-VCH.
Figure12.2Correlationsbetweentolerancefactorandhalideperovskitescrystalstructures.AdaptedfromliteratureZ.Li,etal.,Stabilizingperovskitestructuresbytuningtolerancefactor:formationofformamidiniumandcesiumleadiodidesolid-statealloys,Chem.Mater.28(1)(2015)284à292.r2015AmericanChemicalSociety.
ortetragonalstructure[14à17].Iftislargerthan1,thismeansthatanon-perovskitephasewillbeformed.ThecorrelationbetweentheperovskitecrystalstructureandthetolerancefactorisschematicallyillustratedinFig.12.2.
420NanomaterialsforSolarCellApplications
Figure12.3Calculatedoctahedralfactorandtolerancefactorsforvariouscombina-tionsofhalideperovskites.AdaptedfromliteratureQ.Chen,etal.,Underthespotlight:theorganicàinorganichybridhalideperovskiteforoptoelectronicapplications,NanoToday10(3)(2015)355à396[18].r2015Elsevier.
ComplementingtheGoldschmidttolerancefactor,theoctahedralfac-torμwasdevelopedtoassessthefitofMcationintotheX6octahedron,whichisdefinedas:[13]
rMμ5(12.2)
rXwhererMandrXaretheionicradiiofMcationandXanion,respectively.Aplotofμagainsttofcommonhalideperovskitescanbeconstructed.Fig.12.3showarangeoftoleranceandoctahedralfactorsthatallowinaperovskitestructurewithdifferentA,M,andXions.
12.2.2Optoelectronicproperties
Althoughthehalideperovskiteswerestudiedadecadeago[19à21],onlyrecentlytheyaregivenenoughattentionafterthesuccessfulapplicationinsolarcells.Inadditiontophotovoltaicapplications,halideperovskitesareconsideredasthemostcompellingcandidateforseveraloptoelectronicapplications,suchaslasing[22,23],lightemittingdevices[24à28],andphotodetector[29,30].
Theoperationofasolarcellstartswiththelightabsorptionofthephotovoltaicmaterial.Comparedwithconventionalphotovoltaicmateri-als,theadvantagesofperovskitematerialincludethehighabsorptioncoef-ficient,andthefaciletunnabilityintheiropticalbandgap.Byadjusting
Perovskitesolarcells421
CsPb(CI/Br)3
CsPbCI3
CsPbBr3
CsPb(I/Br)3
CsPbI3
MA
MAPbI3
MA(Sn/Pb)I3
MASnl3
MASn0.8Pb0.2I3
Norm. PL400
450500550600650
700750800Wavelength (nm)
850900950100010501100
Figure12.4RepresentativephotoluminescencespectraofdifferentcompositionsfromthemostblueCsPbCl3tothemostredshiftedCH3NH3(Sn0.8/Pb0.2)I3perovskite.AdaptedfromliteratureM.Salibaetal.,Perovskitesolarcellsfromtheatomictothefilmlevel,Angew.Chem.(2017)2554à2569[36].r2017Wiley-VCH.
theradiusofcationsandionsinAMX3,theopticalbandgapofperovs-kitescanbetunedfrom1.36eV(CH3NH3SnI3)to3.06eV(CsPbCl3)[31à34].Dopingtin-perovskitewithasmallamountofleadleadstoafurtherdecreaseintheopticalbandgap.Themostlowestopticalbandgapisof1.15eVachievedbythelead-tinmixcompositionCH3NH3Sn0.8Pb0.2I3[35](Fig.12.4).
Theabsorptioncoefficient(α)defineshowefficientthematerialabsorbsthelight.Ingeneral,asemiconductorthathasadirectbandgapshowsahigherabsorptioncoefficientthananindirectsemiconductor.Forindirectbandgapmaterial,thelightabortionrequiresaphononassistedtransition.Adirectbandgapdoesn’tneedtheadditionalphononassistedtransition,whichusuallyresultsinastrongerabsorptioncoefficient[37].Halideperovskitesusedinphotovoltaicaredirectbandgapmaterialsthatexhibitastrongabsorption.Themeasurementoftheabsorptioncoeffi-cientofCH3NH3PbI3isgiveninFig.12.5[38].Theabsorptioncoeffi-cientofCH3NH3PbI3wasestimatedtobe1.53104cm21at550nm,indicatingthatthepenetrationdepthfor550nmlightisapproximately0.66μm,anditincreasesto2μmfora700nmlightwiththeabsorptioncoefficientof0.53104cm21.ThismeansmostofthevisiblelightcanbeabsorbedbyCH3NH3PbI3filmwithinalayerthinnerthan2μm.Nonlinearabsorption,forexample,two-photonabsorptionwasalsoobservedinperovskitematerials[39,40],themultimodalabsorptionmakesitpossibletodetectawiderrangeoflightandusedasphotodetector.
Whenitisunderillumination,thephotogeneratedchargecarriersinasolarcellcanbefreeelectronàholepairsorexcitonsdependingonthenatureofthephotovoltaicmaterialandthecontacts.Inparticular,theexcitonbindingenergyisanimportantfactorfordeterminingthedevice