小升初数学专项练习试题三
数学的学习是必要的,为了帮助大家更好的学习数学,本文为大家推荐的是数学专项练习试题 圆柱体积(3)
1、?把一个长1米的圆柱形钢材沿与底面平行的方向截为两段后,表面积增加了78.5平方分米。求原来这根钢材的体积。 2、一根长1.5米的圆柱形钢材,截成相等的2段后,表面积增加1.6平方分米,这根钢材原来的体积是多少立方分米? 3、?把一根长4米的圆柱形的钢材截成相等的两段以后,表面积增加了0.28平方分米,如果每立方分米钢材重7.8千克,这根钢材重多少千克?
4、一根圆柱形木材长2米,把它截成相等的4段后,表面积增加了18.84平方厘米。原来这根圆木的体积是多少立方厘米?
5、把一个长3分米的圆柱,平均分成两段圆柱,表面积增加6.28平方分米。原来这个圆柱体积是多少立方分米? 6、底面直径是20厘米的圆钢,将其截成两段同样的圆钢,两段表面积的和为7536平方厘米,原来圆钢的体积是多少立方厘米?
7、一个圆柱体,把它的高截短3厘米,它的表面积就减少94.2平方厘米,它的体积会减少多少立方厘米?
8、把3完全一样的圆柱,连接成一个大圆柱,长9厘米,
第1页/共4页
表面积减少12.56平方分米。原来每个圆柱的体积是多少立方厘米?
9、把两个完全一样的半个圆柱合并成一个圆柱,底面半径是3厘米,表面积减少72平方厘米。现在这个圆柱的侧面积是多少平方厘米?
10、一个圆柱的高减少2厘米,表面积就减少50.24平方厘米,它的体积减少多少立方厘米? 圆柱体积(4)
1、有一个高10厘米的圆柱,如果将它的高减少2厘米后,得到的圆柱的表面积比原来减少12.56平方厘米,求原来圆柱的体积?
2、一个圆柱的侧面展开是一个正方形。如果高减少3分米,表面积减少94.2平方分米。原来这个圆柱的体积是多少立方分米?
3、一个圆柱高8厘米,如果它的高增加2厘米,那么它的表面积将增加25.12平方厘米,求原来圆柱的体积。 4、一个圆柱的底面周长是18.84厘米,沿着底面直径将它切成相等的两半,表面积增加了180平方厘米,原来这个圆柱的表面积和体积各是多少?
5、 一根2米长的圆柱形木料, 横截面的半径是10厘米, 沿横截面的直径垂直锯开, 分成相等的两块, 每块的体积和表面积各是多少?
第2页/共4页
6、一个圆柱形水池,水池内壁和底面都要镶上瓷砖,水池底面直径6米,池深1.2米。镶瓷砖的面积是多少平方米? 7、把一个高是6分米的圆柱,沿着底面直径竖直切开,平均分成两半,表面积增加48平方分米。原来这个圆柱的体积是多少立方分米?
8、把一个圆柱的底面平均分成若干个扇形,然后切开拼成一个近似的长方体,表面积比原来增加了200平方厘米。已知圆柱高20厘米,求圆柱的体积。
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。 9、把一个高3分米的圆柱体底面平均分成若干个扇形,然后把圆柱体切开,拼成一个与它等底等高的近似长方体。长方体的表面积比圆柱体的表面积增加120平方厘米,原来圆
第3页/共4页
柱体的体积是多少?
10、把一根圆柱形木材沿底面直径切开成两个半圆柱体,已知一个剖面的面积是960平方厘米,半圆柱的体积是3014.4立方厘米,求原来圆柱形木材的体积和侧面积。
要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。
本文为大家推荐的是数学专项练习试题,希望您多加练习,相信会提高您的考试成绩,加油哦!
要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。
第4页/共4页