好文档 - 专业文书写作范文服务资料分享网站

2017年度甘肃庆阳市中考数学试卷

天下 分享 时间: 加入收藏 我要投稿 点赞

.

【点评】本题考查了折叠的性质和相似三角形的性质和判定,折叠是一种对称变换,它属于轴对称,本题的关键是明确折痕是所折线段的垂直平分线,利用三角形相似来解决.

17.(3分)(2017?白银)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC的长为半径画弧,交AB边于点D,则弧CD的长等于 果保留π)

.(结

【分析】先根据ACB=90°,AC=1,AB=2,得到∠ABC=30°,进而得出∠A=60°,再根据AC=1,即可得到弧CD的长.

【解答】解:∵∠ACB=90°,AC=1,AB=2, ∴∠ABC=30°, ∴∠A=60°, 又∵AC=1, ∴弧CD的长为故答案为:

(弧

=

【点评】本题主要考查了弧长公式的运用,解题时注意弧长公式为:l=长为l,圆心角度数为n,圆的半径为R).

18.(3分)(2017?白银)下列图形都是由完全相同的小梯形按一定规律组成的.如果第1个图形的周长为5,那么第2个图形的周长为 8 ,第2017个图形的周长为 6053 .

.

【分析】根据已知图形得出每增加一个小梯形其周长就增加3,据此可得答案. 【解答】解:∵第1个图形的周长为2+3=5, 第2个图形的周长为2+3×2=8, 第3个图形的周长为2+3×3=11, …

∴第2017个图形的周长为2+3×2017=6053, 故答案为:8,6053.

【点评】本题主要考查图形的变化类,根据已知图形得出每增加一个小梯形其周长就增加3是解题的关键.

三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程或演算步骤.

19.(4分)(2017?白银)计算:

﹣3tan30°+(π﹣4)0﹣()﹣1.

【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则计算. 【解答】解:==

﹣3tan30°+(π﹣4)0

【点评】解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式等考点的运算.

20.(4分)(2017?白银)解不等式组数解.

【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小

,并写出该不等式组的最大整

.

小大中间找、大大小小无解了确定不等式组的解集. 【解答】解:解

≤1得:x≤3,

解1﹣x<2得:x>﹣1,

则不等式组的解集是:﹣1<x≤3. ∴该不等式组的最大整数解为x=3.

【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.

21.(6分)(2017?白银)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).

【分析】作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.

【解答】解:如图,△ABC的一条中位线EF如图所示,

方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.

【点评】本题考查复杂作图、三角形的中位线的定义、线段的垂直平分线的性质等知识,解题的关键是掌握基本作图,属于中考常考题型.

22.(6分)(2017?白银)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河

.

路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

【分析】过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.

【解答】解:过点D作DE⊥AC,垂足为E,设BE=x, 在Rt△DEB中,∵∠DBC=65°,

∴DE=xtan65°. 又∵∠DAC=45°, ∴AE=DE. ∴132+x=xtan65°, ∴解得x≈115.8,

∴DE≈248(米).

∴观景亭D到南滨河路AC的距离约为248米.

【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.

.

23.(6分)(2017?白银)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).

(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果; (2)分别求出李燕和刘凯获胜的概率.

【分析】(1)根据题意列出表格,得出游戏中两数和的所有可能的结果数; (2)根据(1)得出两数和共有的情况数和其中和小于12的情况、和大于12的情况数,再根据概率公式即可得出答案. 【解答】解:(1)根据题意列表如下: 甲 乙 3 4 5

6 9 10 11

7 10 11 12

8 11 12 13

9 12 13 14

可见,两数和共有12种等可能结果;

(2)由(1)可知,两数和共有12种等可能的情况,其中和小于12的情况有6种,和大于12的情况有3种, ∴李燕获胜的概率为刘凯获胜的概率为

=; =.

【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数

2017年度甘肃庆阳市中考数学试卷

.【点评】本题考查了折叠的性质和相似三角形的性质和判定,折叠是一种对称变换,它属于轴对称,本题的关键是明确折痕是所折线段的垂直平分线,利用三角形相似来解决.17.(3分)(2017?白银)如图,在△ABC中,∠ACB=90°,AC=1,AB=2,以点A为圆心、AC的长为半径画弧,交AB边于点D,则弧CD的长等于果保留π)
推荐度:
点击下载文档文档为doc格式
9xvvp6is3p1qw0b8cvba7dd7d92whi01as2
领取福利

微信扫码领取福利

微信扫码分享