左图是两个放大单元连接并形成并联形式,同一个输入信号分别进入两个放大单元AMP1、AMP2的“+”“ –”输入端,但使他们的放大倍数保持相同,相位相反。AMP1的增益-R9/R8=-2,AMP2的增益1+R11/R12=2。
右图采用级联形式,AMP3反向,AMP4的增益为-R14/R13=-1。实际上AMP3的输出,经过AMP4 反向后,会有一定的延时,因此这种结构抑制POP声的效果略差一点,通常在小功率的器件中。
除此之外,还有另一种结构,OCL结构,与BTL结构非常类似,优点是系统的频率响应可以延伸到很低的范围。
五、减小输出端耦合电容
这是针对SE输出结构的,它的作用是: ①隔断直流基准电压Vbias
②耦合交流的音频信号,它与扬声器负载构成了一阶高通滤波器
因为噪声和POP声的频谱都在高频,因此可以适当减小电容来消减POP声,但要注意音频增益的损耗和整体的声音质量,需要一个平衡。
六、外部掉电与上电检测
当软件无法有效地控制功放IC的EN或者MUTE的使能、关闭时序时,就需要用到外部的上电掉电检测电路。
若EN或者MUTE是高电平关闭功放IC,低电平使能功放IC。那么检测电路的目标是在上电和掉电的瞬间让EN迅速变为高电平并且保持或者维持一段时间,等待音频IC和功放IC上电完毕后由IO去控制或者变为低电平。如下图所示电路。
有几个细节需要注意:
①检测电路电源的上电速度尽量比功放和音频IC电源的上电速度快。
②检测电路的电源可以选择大一点的,这样保证D2在导通时的电流更大,C2在掉电时的放电速度更快。
③基极电阻R2不能太大,否则会影响Q1的驱动能力。
若EN或者MUTE是低电平关闭功放IC,高电平使能功放IC,那么逻辑正好和上面相反。可以在上述电路后增加一个三极管反向电路。
如果需要用到以上检测电路,建议将上述电路的输出与控制IO做成一定的逻辑,两个不同的电平逻辑分别对应以下电路:
最后讲一种特殊情况,如果在掉电的瞬间有已知的一个信号会瞬间变为低电平,例如有的设计会通过开关将某一信号接地从而进行关机。这时对于掉电的EN控制就会变得很简单,当然这仅限于EN低电平关闭功放的应用。如下图: