极值点偏移的纯偏移型解法湖北安陆一中伍海军整理什么是极值点偏移我们知道二次函数f(x)的顶点就是极值点x0,若f(x)=c的两根的中点为x1?x2x?x2,则刚好有1即极值点在两根的正中间,也就是极值点没有偏移;=x0,22xx1?x2x的极值点=1刚好在两根的中点的左边,我们称之为极值点左偏.0ex2而函数g(x)?
按极值点的偏移来分:分为两类:左偏x1?x2x?x2>x0;右偏1
令f’(x)=0,解得x=1当x变化时,f’(x),f(x)的变化10极大值(1,??)-所以f(x)在(??,1)内是增函数,在(1,??)内是减函数.函数f(x)在x=1处取得极大值f(1)且f(1)=1
ex?2
(Ⅱ)证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)e
;令F(x)=f(x)-g(x),即F(x)?xe?x?(x?2)ex?2;于是F'(x)?(x?1)(e2x?2?1)e?x;当x>1时,2x-2>0,从而e2x-2?1?0,又e?x?0,所以F’(x)>0,从而函数F(x)在[1,+∞)是增函数.又F(1)=e?e?0,所以x>1时,有F(x)>F(1)=0,即f(x)>g(x).(Ⅲ)证明:(1)若(x1?1)(x2?1)?0,由(?)及f(x1)?f(x2),则x1?x2?1.与x1?x2矛盾.(2)若(x1?1)(x2?1)?0,由(?)及f(x1)?f(x2),得x1?x2.与x1?x2矛盾.根据(1)(2)得-1-1(x1?1)(x2?1)?0,不妨设x1?1,x2?1.
由(Ⅱ)可知,f(x2)>g(x2),则g(x2)=f(2-x2),所以f(x2)>f(2-x2),从而f(x1)>f(2-x2).因为x2?1,所以2?x2?1,又由(Ⅰ)可知函数f(x)在区间(-∞,1)内事增函数,所以x1>2?x2,即x1?x2>2.【练习1】已知函数f(x)?lnx?ax2?(2?a)x.(1)讨论f(x)的单调性;(2)设a?0,证明:当0?x?111时,f(?x)?f(?x);(3)若函数y?f(x)的图像与x轴交于A,Baaa两点,线段AB中点的横坐标为x0,证明:f?(x0)<0.2解:(I)f(x)的定义域为(0,??),
f?(x)?
1(2x?1)(ax?1)
?2ax?(2?a)??.xx(i)若a?0,则f?(x)?0,所以f(x)在(0,??)单调增加.(ii)若a?0,则由f?(x)?0得x?
111
,且当x?(0,)时,f?(x)?0,当x?时,f?(x)?0.aaa所以f(x)在(0,)单调增加,在(,??)单调减少.1
a1a(II)设函数g(x)?f(
11
?x)?f(?x),则aag(x)?ln(1?ax)?ln(1?ax)?2ax,aa2a3x2g?(x)???2a?.221?ax1?ax1?ax当0?x?
1
时,g?(x)?0,而g(0)?0,所以g(x)?0.a111
时,f(?x)?f(?x).aaa故当0?x?
(III)由(I)可得,当a?0时,函数y?f(x)的图像与x轴至多有一个交点,故a?0,从而f(x)的最大值为f(),且f()?0.
1
a1a不妨设A(x1,0),B(x2,0),0?x1?x2,则0?x1?
1
?x2.由(II)得ax?x212211
?.由(I)f(?x1)?f(??x1)?f(x1)?0.从而x2??x1,于是x0?1a2aaaa知,f?(x0)?0.
【例2】已知函数f(x)?
1?xx.1)求函数f(x)的单调区间;(2)证明:若x1?x2,e(21?x且f(x1)=f(x2)时,则x1+x2<0.1-xx1-xxx2-2x-11-xx
解:(1)函数f(x)的定义域为(-∞,+∞).f′(x)=′e+e=+e1+x21+x2(1+x2)21+x2
3-x(x-1)2+2x=e.当x<0时,f′(x)>0;当x>0时,f′(x)<0,所以f(x)的单调递增区间为(-(1+x2)2∞,0),单调递减区间为(0,+∞).1-x(2)证明:当x<1时,由于>0,ex>0,故f(x)>0;同理,当x>1时,f(x)<0.当f(x1)=21+xf(x2)(x1≠x2)时,不妨设x1 1+x- 令g(x)=(1-x)ex-x,则g′(x)=-xex(e2x-1).当x∈(0,1)时,g′(x)<0,g(x)单调递减,e从而g(x) f(x2) 【练习3】已知函数f?x???x?2?ex?a?x?1?有两个零点.设x1,x2是f?x?的两个2 零点,证明:x1?x2?2.解:不妨设x1?x2由题意知f?x1??f?x2??0.要证不等式成立,只需证当x1?1?x2 时,原不等式成立即可.令F?x??f?1?x??f?1?x?,则F'?x??xe1?x?e1?x,??4当x?0时,F '?x??0.?F?x??F?0??0.即f?1?x??f?1?x?.令x?1?x1,则f?x2??f?x1??f1??1?x1??f1??1?x1??f?2?x1?,即????f?x2??f?2?x1?.而x2,2?x1??1,???,且f?x?在?1,+??上递增,故x2?2?x1,即x1?x2?2.极值点偏移的的纯偏移型解法步骤:1.构造一元差函数F(x)?f(x)?f(2xo?x)或是F(x)?f(xo?x)?f(xo?x);2.对差函数F(x)求导,判断单调性;3.结合F(0)=0,判断F(x)的符号,从而确定f(x0?x)与f(x0?x)的大小关系;4.由f(x1)?f(x2)?f[x0?(x0?x2)]_____f[x0?(x0?x2)]=f(2x0?x)的大小关系,得到f(x1)________f(2x0?x),(横线上为不等号);5.结合f(x)单调性得到x1____2x0?x2_,进而得到x1?x2________x0.25