考点突破·备战高考
专题12 概率与统计综合问题(专项训练)
1.已知某班n名同学的数学测试成绩(单位:分,满分100分)的频率分布直方图如图所示,其中a,b,c成等差数列,且成绩在[90,100]内的有6人. (1)求n的值;
1
(2)若成绩在[40,50)内的人数是成绩在[50,60)内的人数的,规定60分以下为不及格,从不及格的人中任意
3选取3人,求成绩在50分以下的人数X的分布列和数学期望.
精选资源·战胜高考
考点突破·备战高考
2.下图是某市11月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择11月1日至11月12日中的某一天到达该市,并停留3天.
(1)求此人到达当日空气重度污染的概率;
(2)设ξ是此人停留期间空气重度污染的天数,求ξ的分布列与数学期望.
精选资源·战胜高考
考点突破·备战高考
3.(2019·焦作模拟)某单位共10名员工,他们某年的收入如下表.
员工编号 年薪/万元 1 3 2 3.5 3 4 4 5 5 5.5 6 6.5 7 7 8 7.5 9 8 10 50 (1)求该单位员工当年年薪的平均值和中位数; (2)从该单位中任取2人,此2人中年薪收入高于5万的人数记为ξ,求ξ的分布列和期望;
(3)已知员工年薪收入与工作年限成正线性相关关系,若某员工工作第一年至第四年的年薪分别为3万元,4.2万元,5.6万元,7.2万元,预测该员工第五年的年薪为多少?
^^
^
附:线性回归方程y=bx+a中系数计算公式
n
--
^-^-
--
^
? (xi-x)(yi-y)
i=1
n
b=i=1
-
,a=y-bx,其中x,y表示样本均值.
? (xi-x)2
4.(2018·全国卷Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为p(0
精选资源·战胜高考
考点突破·备战高考
立.
(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.
(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. ①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求E(X). ②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?
精选资源·战胜高考
考点突破·备战高考
5.(2019·甘肃兰州诊断)“中国式过马路”是网友对部分中国人集体闯红灯现象的一种调侃.即“凑够一撮人就可以走了,和红绿灯无关”,某校研究性学习小组对全校学生按“跟从别人闯红灯”“从不闯红灯”“带头闯红灯”等三种形式过马路进行调查,获得下表数据:
男生 女生 跟从别人闯红灯 980 340 从不闯红灯 410 150 带头闯红灯 60 60 用分层抽样的方法,从所有被调查的人中抽取一个容量为n的样本,其中在“跟从别人闯红灯”的人中抽取了66人. (1)求n的值;
(2)在所抽取的“带头闯红灯”的人中,任选2人参加星期天社区组织的“文明交通”宣传活动,求这2人中至少有1人是女生的概率.
6.(2018·全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由.
精选资源·战胜高考