1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
第2章 染色体与DNA 名词解释
原癌基因:细胞内与细胞增殖相关的正常基因,是维持机体正常生命活动所必须的,在进化上高等保守。 当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增殖,从而形成肿瘤。
复制:以亲代DNA或RNA为模板,根据碱基配对的原则,在一系列酶的作用下,生成与亲代相同的子代DNA或RNA的过程。
转座子 (transposon 或 transposable element):位于染色体DNA上可自主复制和位移的基本单位。包括插入序列和复合转座子。
半保留复制:以亲代DNA双链为模板以碱基互补方式合成子代DNA,这样新形成的子代DNA中,一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式叫半保留复制。
染色体: 染色体是遗传信息的载体,由DNA、RNA和蛋白质构成,其形态和数目具有种系的特性。在细胞间期核中,以染色质形式存在。在细胞分裂时,染色质丝经过螺旋化、折叠、包装成为染色体,为显微镜下可见的具不同形状的小体。
核小体:是构成真核生物染色体的基本单位,是DNA和蛋白质构成的紧密结构形式,包括200bp左右的DNA和9个组蛋白分子构成的致密结构。 填空题
1.真核细胞核小体的组成是 DNA和 蛋白
2.天然染色体末端不能与其他染色体断裂片段发生连接,这是因为天然染色
1
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
体末端存在端粒结构。
3.在聚合酶链反应中,除了需要模板DNA外,还需加入引物、DNA聚合酶、dNTP和镁离子。
4.引起DNA损伤的因素有自发因素、物理因素、化学因素。
5.DNA复制时与DNA解链有关的酶和蛋白质有拓扑异构酶Ⅱ、解螺旋酶、单链DNA结合蛋白。
6.参与DNA切除修复的酶有DNA聚合酶Ⅰ、DNA连接酶、特异的核酸内切酶。 7.在真核生物中DNA复制的主要酶是DNA聚合酶δ。在原核生物中是DNA聚合酶Ⅲ。
8.端粒酶是端粒酶是含一段RNA的逆转录酶。
9.DNA的修复方式有错配修复、碱基切除修复、核苷酸切除修复、DNA的直接修复。 选择题
1.真核生物复制起点的特征包括(B)
A. 富含G-C区 B. 富含A-T区 C. Z-DNA D. 无明显特征 2.插入序列(IS)编码(A)
A.转座酶 B.逆转录酶 C. DNA合成酶 D.核糖核酸酶 3.紫外线照射对DNA分子的损伤主要是(D)
A.碱基替换 B.磷酸脂键断裂 C。碱基丢失 D.形成共价连接的嘧啶二聚体 4.自然界中以DNA为遗传物质的大多数生物DNA的复制方式(C)
2
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
A.环式 B.D环式 C.半保留 D.全保留 5.原核生物基因组中没有(A)
A.内含子 B.外显子 C.转录因子 D.插入序列 6.关于组蛋白下列说法正确的是(D)
A.为中性蛋白 B.为酸性蛋白 C.进化上不具保守性 D.染色体结合蛋白 7.DNA聚合酶Ⅰ(C)
A.是复制酶,但不是修复酶 B.没有模板依赖性 C.有5′→3′外切酶活性
D. 5′→3′聚合酶活性极强
简述DNA复制的过程
DNA的复制过程可被分为3个阶段,即复制的起始、延伸和终止。每个DNA复制的独立单元主要包括复制起始位点和终止位点。
DNA复制的起始包括预引发和引发两个阶段。在预引发阶段,DNA解旋解链,形成复制叉,引发体组装;在引发阶段,在引发酶的催化下以DNA链为模板合成一段短的RNA引物。复制时DNA链的延伸由DNA聚合酶催化,以亲代DNA链为模板,引发体移动,从5′→3′方向聚合子代DNA链。当子链延伸到达终止位点是,DNA复制就终止了,切除RNA引物,填补缺口,在DNA连接酶的催化下将相邻的冈崎片段连接起来形成完整的DNA长链。
试述真原核生物的DNA复制的特点的不同之处
①真核生物染色体有多个复制起点,多复制眼,呈双向复制,多复制子。原核生物的染色体只有一个复制起点,单复制子也呈双向复制。
3
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
②真核生物冈崎片段长约200bp比原核生物略短。真核生物DNA复制速度比原核慢,速度为1000~3000bp/min(仅为原核生物的1/20~1/50)。 ③真核生物复制的终止在端粒处,原核生物的复制叉相遇时即终止。 ④真核生物染色体在全部复制完之前起点不再重新开始复制;而在快速生长的原核生物染色体DNA复制中,起点可以连续发动复制。真核生物快速生长时,往往采用更多的复制起点。
⑤真核生物有多种DNA聚合酶,DNA聚合酶δ是真正的复制酶,在PCNA存在下有持续的合成能力。PCNA称为增殖细胞核抗原,相当于大肠杆菌DNA聚合酶Ⅲ的β-夹子,RFC蛋白相当于夹子装配器。
原核生物的DNA聚合酶有三种DNA聚合酶ⅢDNA的真正复制酶:多亚基酶,含十种亚基,该酶DNA合成的持续能力强。
⑥真核生物线性染色体两端有端粒结构,它是由许多成串的重短复序列组成,端粒功能是稳定染色体末段结构,防止染色体间的末端连接,并可补偿滞后链5’-末段在消除RNA引物后造成的空缺,使染色体保持一定长度。端粒酶是含一段RNA的逆转录酶。
⑦RPA:真核生物的单链结合蛋白;RNaseH1和MF-1切除RNA引物,DNA聚合酶ε填补缺口。
简述半保留复制的生物学意义 DNA的复制过程(以大肠杆菌为例) 复制起始:
(1)、拓扑异构酶解开超螺旋。
4
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
(2)、Dna A蛋白识别并在ATP存在下结合于四个9bp的重复序列。 (3)、在类组蛋白(HU、ATP参与下, Dan A蛋白变性13个bp的重复序列,形成开链复合物。
(4) 、Dna B借助于水解ATP产生的能量在Dna C的帮助下沿5’ →3’ 方向移动,解开DNA双链,形成前引发复合物。 (5)、单链结合蛋白结合于单链。
(6)、引物合成酶(Dna G蛋白)开始合成RNA引物。 链的延长(冈崎片段的合成):
在DNA聚合酶Ш的催化下,以四种5’ -脱氧核苷三磷酸为底物,在RNA引物的3’端以磷酸二酯键连接上脱氧核糖核苷酸并释放出焦磷酸。DNA链的延伸同时进行前导链和滞后链的合成。两条链方向相反。 6、PCR的基本原理?
PCR是在试管中进行的DNA复制反应,基本原理是依据细胞内DNA半保留复制的机理,以及体外DNA分子于不同温度下双链和单链可以互相转变的性质,人为地控制体外合成系统的温度,以促使双链DNA变成单链,单链DNA与人工合成的引物退火,然后耐热DNA聚合酶以dNTP为原料使引物沿着单链模板延伸为双链DNA。PCR全过程每一步的转换是通过温度的改变来控制的。需要重复进行DNA模板解链、引物与模板DNA结合、DNA聚合酶催化新生DNA的合成,即高温变性、低温退火、中温延伸3个步骤构成PCR反应的一个循环,此循环的反复进行,就可使目的DNA得以迅速扩增。DNA模板变性:模板双链DNA?单链DNA,94℃。退火:引物+单链DNA?杂交链,引物的Tm值。引物的延伸:温度至70 ℃左右, Taq DNA聚合酶以4种dNTP为原料,以目的DNA为模板,催化以引物3’末端为起点的5’→3’DNA链延伸反应,形成新生DNA链。新合成的引物延伸
5