网络教育《经济数学》
作业题
第一部分 单项选择题
11.某产品每日的产量是x件,产品的总售价是x2?70x?1100元,每一件的成
21本为(30?x)元,则每天的利润为多少?(A )
31A.x2?40x?1100元 61B.x2?30x?1100元
65C.x2?40x?1100元
65D.x2?30x?1100元
6
12.已知f(x)的定义域是[0,1],求f(x?a)+ f(x?a),0?a?的定义域是?
2(C )
A.[?a,1?a] B.[a,1?a] C.[a,1?a] D.[?a,1?a]
3.计算limsinkx??(B )
x?0xA.0 B.k
1C.
kD.?
1
24.计算lim(1?)x??( C)
x??xA.e
1B.
eC.e2 D.
?ax2?b,???x?2?5.求a,b的取值,使得函数f(x)??1,?????x?2在x?2处连续。(A )
?bx?3,???x?2?1 e21,b??1 23B.a?,b?1
21C.a?,b?2
23D.a?,b?2
2A.a?
6.试求y?x+x在x?1的导数值为(B )
3A.
25B.
21C.
21D.?
2
7.设某产品的总成本函数为:C(x)?400?3x?12100x,需求函数P?,其中x2x32为产量(假定等于需求量),P为价格,则边际成本为?( B)
A.3 B.3?x C.3?x2 D.3?
2
1x 2
8.试计算?(x2?2x?4)exdx??(D )
A.(x2?4x?8)ex B.(x2?4x?8)ex?c C.(x2?4x?8)ex D.(x2?4x?8)ex?c
9.计算?10x21?x2dx??( D)
A.?2 B.?4
C.?8
D.?16
10.计算
x1?1x1?2x?1x??(A )
22?2A.x1?x2 B.x1?x2 C.x2?x1 D.2x2?x1
121411.计算行列式D?0?1211013=?(0131A.-8 B.-7 C.-6 D.-5
B)3
yxx?y12.行列式xx?yy=?(B )
x?yyxA.2(x3?y3) B.?2(x3?y3) C.2(x3?y3) D.?2(x3?y3)
??x1?x13.齐次线性方程组?2?x3?0?x1??x2?x3?0有非零解,则?=?(??x1?x2?x3?0A.-1 B.0 C.1 D.2
?0?14.设A???1976?06?????0905???,B??3??53?,求AB=?( D)??76???A.??104110??6084??
B.??104111??6280??
C.??104111??6084??
D.??104111??6284??
4
C )
?1?15.设A??2?3?2243???11?,求A=?( D) 3???1?3A.???2?1?2??5? ?32?1?1??3?13?2???35? B.??3?22??11?1????1?3 C.??2?1??1?3D.???2?1?
16.向指定的目标连续射击四枪,用Ai表示“第i次射中目标”,试用Ai表示前两枪都射中目标,后两枪都没有射中目标。(A )
A.A1A2A3A4 B.1?A1A2A3A4 C.A1?A2?A3?A4 D.1?A1A2A3A4
17.一批产品由8件正品和2件次品组成,从中任取3件,这三件产品中恰有一件次品的概率为(B )
3A.
55
?2??5? ?32?1?1???2??5? ?32?1?1??33
B.8
15 C.
7 152D.
5
18.袋中装有4个黑球和1个白球,每次从袋中随机的摸出一个球,并换入一个黑球,继续进行,求第三次摸到黑球的概率是( D)
16A.
12517 B.
125108 C.
125109D.
125
19.市场供应的热水瓶中,甲厂的产品占50%,乙厂的产品占30%,丙厂的产品占20%,甲厂产品的合格率为90%,乙厂产品的合格率为85%,丙厂产品的合格率为80%,从市场上任意买一个热水瓶,则买到合格品的概率为(D )
A.0.725 B.0.5 C.0.825 D.0.865
?Ax2,0?x?120.设连续型随机变量X的密度函数为p(x)??,则A的值为:(C)
0,else?A.1 B.2 C.3 D.1
6