好文档 - 专业文书写作范文服务资料分享网站

球外接与内切问题 专练

天下 分享 时间: 加入收藏 我要投稿 点赞

全国名校高一数学优质学案专题汇编(附详解)

球相关的外接与内切问题专练

一、选择题

1、一个正方体的表面积和它的外接球的表面积之比是( ).

3A.

?4B.

?2C.?

1D.

?【答案】C

【解析】设正方体的棱长为a,则正方体表面积S1?6a 正方体外接球半径为正方体体对角线的一半,即R?3?正方体外接球表面积S2?4?R2?4??a2?3?a2

43a 22S16a22??? S23?a2?本题正确选项:C

2.若三棱锥的三条侧棱两两垂直,且侧棱长都相等,其外接球的表面积是4?,则其侧棱长为( ). A.3 3B.

23 3C.22 3D.

2 3【答案】B

【解析】三棱锥的三条侧棱两两互相垂直,所以它的外接球就是它扩展为正方体的外接球,

因为外接球的表面积是4?,所以球的半径为1, 所以正方体的对角线的长为2,

222设侧棱长为a,则a?a?a?2,?a?22?3. 33全国名校高一数学优质学案专题汇编(附详解)

所以侧棱长为故选:B.

23. 33.如图,在矩形ABCD中,AD?2AB?2,E是AD的中点,将△ABE,△CDE分别沿BE,CE折起,使得平面ABE?平面BCE,平面CDE?平面BCE,则所得几何体

ABCDE的外接球的表面积为

A.

32? 3B.8?

C.4?

D.?

43【答案】C

【解析】由题可得△ABE,△CDE,△BEC均为等腰直角三角形,如图,

设BE,EC,BC的中点分别为M,N,O,

连接AM,OM,AO,DN,NO,DO,OE,则OM?BE,ON?CE. 因为平面ABE?平面BCE,平面CDE?平面BCE,

所以OM?平面ABE,ON?平面DEC,易得OA?OB?OC?OD?OE?1, 则几何体ABCDE的外接球的球心为O,半径R?1,

所以几何体ABCDE的外接球的表面积为S?4?R2?4?.故选C.

4.如图,圆形纸片的圆心为O,半径为6cm,该纸片上的正方形ABCD的中心为O.E,F,G,H为圆O上的点,△ABE,△BCF,△CDG,△ADH分别是以AB,BC,CD,DA为底边的等腰三角形.沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起△ABE,

全国名校高一数学优质学案专题汇编(附详解)

△BCF,△CDG,△ADH,使得E,F,G,H重合得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为( )

A. B. C. D.

【答案】D 【解析】如图:

连接交于点,设重合交于点, 设正方形的边长为

,则

因为该四棱锥的侧面积是底面积的2倍,则,解得

设该四棱锥的外接球的球心为,半径为, 则有,

因为,所以.

,解得

, 外接球的表面积为,故选.

5.直三棱柱

的所有棱长均为

,则此三棱柱的外接球的表面积为( )

球外接与内切问题 专练

全国名校高一数学优质学案专题汇编(附详解)球相关的外接与内切问题专练一、选择题1、一个正方体的表面积和它的外接球的表面积之比是().3A.?4B.?2C.?1D.?【答案】C【解析】设正方体的棱长为a,则正方体表面积S1?6
推荐度:
点击下载文档文档为doc格式
9wbgr6g93502tjb2ixwe3xy6q955p4014u6
领取福利

微信扫码领取福利

微信扫码分享