【分析】(1)根据垂径定理得到OE⊥AC,求得∠AFE=90°,求得∠EAO=90°,于是得到结论;
(2)根据等腰三角形的性质和圆周角定理得到∠ODB=∠C,求得tanC=tan∠ODB==,设HF=3x,DF=4x,根据勾股定理得到DF=
,HF=
,根据相似三角形的
性质得到CF==,求得AF=CF=,设OA=OD=x,根据勾股定理即
可得到结论.
【解答】解:(1)∵D是∴OE⊥AC, ∴∠AFE=90°, ∴∠E+∠EAF=90°,
∵∠AOE=2∠C,∠CAE=2∠C, ∴∠CAE=∠AOE, ∴∠E+∠AOE=90°, ∴∠EAO=90°, ∴AE是⊙O的切线; (2)∵∠C=∠B, ∵OD=OB, ∴∠B=∠ODB, ∴∠ODB=∠C, ∴tanC=tan∠ODB=
=,
的中点,
∴设HF=3x,DF=4x,
∴DH=5x=9, ∴x=, ∴DF=
,HF=
,
∵∠C=∠FDH,∠DFH=∠CFD, ∴△DFH∽△CFD, ∴
=
,
∴CF==,
∴AF=CF=,
设OA=OD=x, ∴OF=x﹣
2
22
,
2
∵AF+OF=OA, ∴(
)+(x﹣
)=x,
2
2
解得:x=10, ∴OA=10,
∴直径AB的长为20.
【点评】本题考查了切线的判定和性质,圆周角定理,垂径定理,相似三角形的判定和性质,正确的识别图形是解题的关键. 21.(8分)阅读下面的材料:
如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2, (1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;
(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数. 例题:证明函数f(x)=(x>0)是减函数. 证明:设0<x1<x2, f(x1)﹣f(x2)=∵0<x1<x2,
∴x2﹣x1>0,x1x2>0. ∴
>0.即f(x1)﹣f(x2)>0.
﹣
=
=
.
∴f(x1)>f(x2).
∴函数f(x)═(x>0)是减函数. 根据以上材料,解答下面的问题: 已知函数f(x)=f(﹣1)=
+x(x<0),
+(﹣1)=0,f(﹣2)=
,f(﹣4)= ﹣
+(﹣2)=﹣ ;
(1)计算:f(﹣3)= ﹣(2)猜想:函数f(x)=
+x(x<0)是 增 函数(填“增”或“减”);
(3)请仿照例题证明你的猜想.
【分析】(1)根据题目中函数解析式可以解答本题; (2)由(1)结论可得;
(3)根据题目中例子的证明方法可以证明(1)中的猜想成立. 【解答】解:(1)∵f(x)=∴f(﹣3)=故答案为:﹣
﹣3=﹣,﹣
+x(x<0), ,f(﹣4)=
﹣4=﹣
(2)∵﹣4<﹣3,f(﹣4)>f(﹣3) ∴函数f(x)=故答案为:增
+x(x<0)是增函数
(3)设x1<x2<0, ∵f(x1)﹣f(x2)=∵x1<x2<0,
∴x1﹣x2<0,x1+x2<0, ∴f(x1)﹣f(x2)<0 ∴f(x1)<f(x2) ∴函数f(x)=
+x(x<0)是增函数
+x1﹣
﹣x2=(x1﹣x2)(1﹣
)
【点评】本题考查反比例函数图象上的坐标特征、反比例函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答.
22.(11分)如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.
(1)求线段CE的长;
(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=y.
①写出y关于x的函数解析式,并求出y的最小值;
②是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.
【分析】(1)由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.在Rt△ECF中,利用勾股定理构建方程即可解决问题. (2)①证明△ADM∽△GMN,可得
=
,由此即可解决问题.
②存在.有两种情形:如图3﹣1中,当MN=MD时.如图3﹣2中,当MN=DN时,作MH⊥DG于H.分别求解即可解决问题. 【解答】解:(1)如图1中,
∵四边形ABCD是矩形, ∴AD=BC=10,AB=CD=8, ∴∠B=∠BCD=90°,
由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x. 在Rt△ABF中,BF=∴CF=BC﹣BF=10﹣6=4,
在Rt△EFC中,则有:(8﹣x)=x+4, ∴x=3, ∴EC=3.
(2)①如图2中,
2
2
2
=6,
∵AD∥CG, ∴∴
=
,
=,
∴CG=6,
∴BG=BC+CG=16, 在Rt△ABG中,AG=
=8
,