2019-2020中考数学试卷及答案
一、选择题
1.如图是某个几何体的三视图,该几何体是()
A.三棱柱
B.三棱锥
C.圆柱
D.圆锥
2.下列几何体中,其侧面展开图为扇形的是( )
A. B. C. D.
3.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是( )
A. B.
C. D.
4.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下( )元 A.8
B.16
C.24
D.32
5.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为( )
A.7分 B.8分 C.9分 D.10分
6.如图,直线l1∥l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1上,两直角边分别与直线l1、l2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )
A.25° A.a2?a=a2 C.a2b﹣2ba2=﹣a2b
B.75° C.65° a2=a3 B.a6÷D.(﹣
D.55°
7.下列计算正确的是( )
339)=﹣3 2a8a8.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )
A.40°
B.50°
C.60°
D.70°
,4),顶点C在x轴的负半轴9.如图,O为坐标原点,菱形OABC的顶点A的坐标为(?3上,函数y?k(x?0)的图象经过顶点B,则k的值为( ) x
A.?12 B.?27 C.?32 D.?36
10.某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)之间的函数关系式为S?V?h?0?,这个函数的图象大致是( ) hA. B.
C.
D.
11.下列长度的三根小木棒能构成三角形的是( )
A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 12.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为( )
A.10 B.12 C.16 D.18
二、填空题
13.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n 色盲患者的频数m 色盲患者的频率m/n 50 100 200 400 500 800 1000 1200 1500 2000 3 7 13 29 37 55 69 85 105 138 0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069
根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).
14.如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△AnBnAn+1的边长为______.
15.如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________.
16.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.
在第n个图形中有______个三角形(用含n的式子表示)
?3x?2x?4?17.不等式组?x?1的整数解是x= .
?1?x?1??218.如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与
点B重合,那么折痕长等于 cm.
19.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是 .
20.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=_____.
三、解答题
21.先化简,再求值:(a?2)(a?2)?a(4?a),其中a?1. 422.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平
2方,如:3?22?,善于思考的小明进行了以下探索: (1?2)设a?b2?m?n2(其中a、b、m、n均为整数),则有
??2a?b2?m2?2n2?2mn2.
∴a?m2?2n2,b?2mn.这样小明就找到了一种把部分a?b2的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
当a、b、m、n均为正整数时,若a?b3?m?n3,用含m、n的式子分别表示
??2a、b,得a= ,b= ;
(2)利用所探索的结论,找一组正整数a、b、m、n,填空: + =( +
3)2;
(3)若a?43?m+n3??,且a、b、m、n均为正整数,求a的值.
223.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt△ABC三个顶点都在格点上,请解答下列问题: (1)写出A,C两点的坐标;
(2)画出△ABC关于原点O的中心对称图形△A1B1C1;
(3)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并直接写出点C旋转至C2经过的路径长.