上面,我们简要地回顾了数的发展过程.必须指出,数的概念的产生,实际上是交错进行的.例如,在人们还没有完全认识负数之前,早就知道了无理数的存在;在实数理论还未完全建立之前,经运用虚数解三次方程了.
直到19世纪初,从自然数到复数的理论基础,并未被认真考虑过.后来,由于数学严密性的需要以及公理化倾向的影响,促使人们开始认真研究整个数系的逻辑结构.从19世纪中叶起,经过皮亚诺(G.Peano,1855~1939)、康托尔(G.Cantor,1845~1918)、戴德金(R.Dedekind,1831~1916)、外尔斯特拉斯(K.Weierstrass,1815~1897)等数学家的努力,完成了建立整个数系的逻辑工作.
近代数学关于数的理论,是在总结数的历史发展的基础上,用代数结构的观点和比较严格的公理系统加以整理而建立起来的.作为数的理论系统的基础,首先要建立自然数系,然后逐步加以扩展.一般采用的扩展过程是
N--------→Z--------→Q--------→R--------→C (自然数集) (整数集) (有理数集) (实数集) (复数集)
科学的数集扩充,通常采用两种方法:一是添加元素法,即把新元素添加到已建立的数集中去;二是构造法,即从理论上构造一个集合,然后指出这个集合的某个真子集与先前的数集是同构的.
中、小学数学教学中,为了适应学生的年龄特征和接受能力,关于数系的扩充,主要是渗透近代数学观点,采用添加元素并强调运算的方法来进行的.其扩充过程是:
自然数集(添零)→扩大的自然数集(添正分数)→算术数集(添负有理数) →有理数集(添无理数)→实数集(添虚数)→复数集
数系的每一次扩充,都解决了一定的矛盾,从而扩大了数的应用范围.但是,数系的每一次扩充也会失去某些性质.例如,从自然数系N扩充到整数系Z后,Z对减法具有封闭性,但失去N 的良序性质,即N中任何非空子集都有最小元素.又如,由实数系R 扩充到复数系C后,C是代数闭域,即任何代数方程必有根,但失去了R的顺序性,C 中元素已无大小可言.
数系扩充到复数系后,能否继续扩充?这个问题的答案是有条件的.如果要求完全满足复数系的全部运算性质,那么任何扩充都是难以成功的.如果放弃某些要求,那么进一步的扩充是可能的.比如,放弃乘法交换律,复数系C可以扩充
为四元数系H,如果再适当改变对乘法结合律的要求,四元数系H又可扩充为八元数系Ca等等.当然,在现代数学中,通常总是把“数”理解为复数或实数,只有在个别情况,经特别指出,才用到四元数.至于八元数的使用就更罕见了.