一、初一数学一元一次方程解答题压轴题精选(难)
1.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州厂运往南昌的机器为x台,
(1)用含x的代数式来表示总运费(单位:元)
(2)若总运费为8400元,则杭州厂运往南昌的机器应为多少台?
(3)试问有无可能使总运费是7800元?若有可能请写出相应的调动方案;若无可能,请说明理由.
【答案】 (1)解:总费用为:400(6-x)+800(4+x)+300x +500(4-x)=200x+7600 (2)解:由题意得200x+7600=8400,解得x=4, 答:杭州运往南昌的机器应为4台
(3)解:由题意得200x+7600=7800, 解得x=1. 符合实际意义,
答: 有可能 ,杭州厂运往南昌的机器为1台.
【解析】【分析】(1)根据总费用=四条线路的运费之和(每一条线路的费用=台数×运费),列式后化简即可。
(2)根据(1)中的表达式等于8400,列方程并求解。
(3)根据(1)中的表达式等于7800,列方程并求解,若方程的解符合实际意义,则有可能,否则就不可能。
2.(公园门票价格规定如下表: 购票张数 1~50张 51~100张 100张以上 11元 9元 每张票的价格 13元 某校七年级(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人,(2)班超过50人,但不足100人。经估算,如果两个班都以班为单位购票,则一共应付1240元,问:
(1)两班各有多少学生?
(2)如果两班联合起来,作为一个团体购票,可省多少钱?
(3)如果七年级(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?
【答案】 (1)解:设七(1)班有x人,
由题意可知:七(2)班的人数应不足64人,且多于54人 则根据题意,列方程得:13x+11(104-x)=1240 解得:x=48.
即七(1)班48人,七(2)班56人;
(2)解:1240-104×9=304, 所以可省304元钱
(3)解:要想省钱,由(1)可知七(1)班48人,只需多买3张票, 51×11=561,48×13=624>561, ∴ 48人买51人的票可以更省钱
【解析】【分析】(1)设七(1)班有x人,根据条件:某校七(1)、(2)两个班共104人去游览该公园,其中七(1)班人数较少,不足50人,但超过40人,可得七(2)班的人数应不足64人,且多于54人,再根据1240元的门票钱可列方程解得答案;(2)如果两班联合起来作为一个团体购票,则每张票9元,可省1240-104×9元;(3)由(1)可得七(1)班48人,所以多买3张票,按照第二种售票方案买票.
3.某航空公司开展网络购机票优惠活动:凡购机票每张不超过2000元的一律八折优惠;超过2000元的,其中2000元按八折算,超过2000的部分按七折算. (1)甲旅客购买了一张机票的原价为1500元,需付款________元;
(2)乙旅客购买了一张机票的原价为x(x>2000)元,需付款________元(用含x的代数式表示);
(3)丙旅客因出差购买了两张机票,第一张机票实际付款1440元,第二张机票享受了七折优惠,他査看了所买机票的原价,发现两张票共节约了910元,求丙旅客第二张机票的原价和实际付款各多少元? 【答案】 (1)1200 (2)0.7x+200
(3)解:第一张机票的原价为1440÷0.8=1800(元).
设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元, 根据题意得:1440+0.7y+200=1800+y-910, 解得:y=2500,
∴1800+y-910-1440=1950.
答:丙旅客第二张机票的原价为2500元,实际付款1950元 【解析】【解答】解:(1)1500×0.8=1200(元).
故答案为:1200. (2)根据题意得:需付款=2000×0.8+(x-2000)×0.7=0.7x+200(元). 故答案为:(0.7x+200).
【分析】(1)利用需付款=原价×0.8,即可求出结论; (2)根据需付款=2000×0.8+0.7×超出2000元部分,即可求出结论; (3)根据原价=需付款÷0.8可求出第一张机票的原价,
设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据(2)的结论,即可得出关于y的一元一次方程,解之即可得出结论.
4.某校七年级10个班师生举行文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,七年级统计后发现歌唱类节目比跳舞类节目数的2倍少4个. (1)七年级师生表演的歌唱与舞蹈类节目数各有多少个?
(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从开始到结束共用2小时35分钟,问参与的小品类节目有多少个?
【答案】 (1)解:设七年级师生表演的舞蹈类节目有x个,表演歌唱类节目有(2x﹣4)个,
根据题意,得:x+2x﹣4=10×2, 解得:x=8, 所以2x﹣4=12.
答:七年级师生表演的歌唱类节目有12个,舞蹈类节目有8个
(2)解:设参与的小品类节目有a个, 根据题意,得:12×5+8×6+8a+15=2×60+35, 解得:a=4,
答:参与的小品类节目有4个
【解析】【分析】(1)设七年级师生表演的舞蹈类节目有x个,表演歌唱类节目有 (2x-4)个.根据“七年级统计后发现歌唱类节目比跳舞类节目数的2倍少4个”列方程求解可得;(2)设参与的小品类节目有a个,根据“三类节目的总时间+交接用时=2小时35分钟”列等式求解可得.
5.小明和父母打算去某火锅店吃火锅,该店在网上出售“ 券”(即面值
元的代金券实付
元抵
元的全场通用代金
元就能获得),店家规定代金券等同现金使用,一次消费
最多可用 张代金券,而且使用代金券的金额不能超过应付总金额. (1)如果小明一家应付总金额为 元:
(2)小明一家来到火锅店后,发现店家现场还有一个优惠方式: 除锅底不打折外,其余菜品全部 折.小明一家点了一份 实际付了多少元? 【答案】 (1)解:
∴最多购买并使用两张代金券, 最多优惠 元
元的锅底和其他菜品,用餐完毕后,聪明的小明对比两
元.问小明一家
元,那么用代金券方式买单,他们最多可以优惠多少
种优惠,选择了现场优惠方式买单,这样比用代金券方式买单还能少付