好文档 - 专业文书写作范文服务资料分享网站

2018年江苏省镇江市中学考试数学试卷(试卷+问题详解+解析汇报)

天下 分享 时间: 加入收藏 我要投稿 点赞

2018年省市中考数学试卷

一、填空题(本大题共有12小题,每小题2分,共计24分.) 1.(2分)﹣8的绝对值是 .

2.(2分)一组数据2,3,3,1,5的众数是 . 3.(2分)计算:(a)= . 4.(2分)分解因式:x﹣1= .

223

5.(2分)若分式有意义,则实数x的取值围是 .

6.(2分)计算:= .

7.(2分)圆锥底面圆的半径为1,侧面积等于3π,则它的母线长为 .

8.(2分)反比例函数y=(k≠0)的图象经过点A(﹣2,4),则在每一个象限,y随x的增大而 .(填“增大”或“减小”) 9.(2分)如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB= °.

10.(2分)已知二次函数y=x﹣4x+k的图象的顶点在x轴下方,则实数k的取值围是 .

11.(2分)如图,△ABC中,∠BAC>90°,BC=5,将△ABC绕点C按顺时针方向旋转90°,点B对应点B′落在BA的延长线上.若sin∠B′AC=,则AC= .

2

12.(2分)如图,点E、F、G分别在菱形ABCD的边AB,BC,AD上,AE=AB,CF=CB,AG=AD.已知△EFG的面积等于6,则菱形ABCD的面积等于 .

二、选择题(本大题共有5小题,每小题3分,共计15分.在每小题所给出的四个选项中,只有一项符合题目要求.) 13.(3分)0.000182用科学记数法表示应为( )

A.0182×10﹣3 B.1.82×10﹣4 C.1.82×10﹣5 D.18.2×10﹣4

14.(3分)如图是由3个大小相同的小正方体组成的几何体,它的左视图是( )

A. B. C. D.

15.(3分)小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域分别标连接偶数数字2,4,6,…,2n(每个区域标注1个数字,且各区域标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为( )

A.36 B.30 C.24 D.18

16.(3分)甲、乙两地相距80km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h,并继续匀速行驶至乙地,汽车行驶的路程y(km)与时间x(h)之间的函数关系如图所示,该车到达乙地的时间是当天上午( )

A.10:35 B.10:40 C.10:45 D.10:50

17.(3分)如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k的值为( )

A. B. C. D.

三、解答题(本大题共有11小题,共计81分,解答应写出必要的文字说明、证明过程或演算步骤.) 18.(8分)(1)计算:2+(2018﹣π)﹣sin30° (2)化简:(a+1)﹣a(a+1)﹣1.

2

﹣1

0

19.(10分)(1)解方程:=+1.

(2)解不等式组:

20.(6分)如图,数轴上的点A,B,C,D表示的数分别为﹣3,﹣1,1,2,从A,B,C,D四点中任意取两点,求所取两点之间的距离为2的概率.

21.(6分)小读一本名著,星期六读了36页,第二天读了剩余部分的,这两天共读了整本书的,这本名著共有多少页? 22.(6分)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC. (1)求证:△ABE≌△ACF;

(2)若∠BAE=30°,则∠ADC= °.

23.(6分)某班50名学生的身高如下(单位:cm): 160 163 152 161 167 154 158 171 156 168 178 151 156 158 165 160 148 155 162 175

158 167 157 153 164 172 153 159 154 155 169 163 158 150 177 155 166 161 159 164 171 154 157 165 152 167 157 162 155 160

(1)小丽用简单随机抽样的方法从这50个数据中抽取一个容量为5的样本:161,155,174,163,152,请你计算小丽所抽取的这个样本的平均数;

(2)小丽将这50个数据按身高相差4cm分组,并制作了如下的表格:

身高 147.5~151.5 151.5~155.5 155.5~159.5 159.5~163.5 163.5~167.5 167.5~171.5 171.5~175.5 175.5~179.5

合计

①m= ,n= ;

②这50名学生身高的中位数落在哪个身高段?身高在哪一段的学生数最多?

24.(6分)如图,校园有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8米到达点G处,测得教学楼CD顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB的高度AB长.(精确到0.1米)参考值:

≈1.41,

≈1.73.

频数 11 8 4

频率 0.06

m

0.18 0.16 0.06 1

n

2 50

25.(6分)如图,一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A(﹣9,0),B(0,6)两点,过点C(2,0)作直线l与BC垂直,点E在直线l位于x轴上方的部分. (1)求一次函数y=kx+b(k≠0)的表达式; (2)若△ACE的面积为11,求点E的坐标; (3)当∠CBE=∠ABO时,点E的坐标为 .

26.(8分)如图1,平行四边形ABCD中,AB⊥AC,AB=6,AD=10,点P在边AD上运动,以P为圆心,PA为半径的⊙P与对角线AC交于A,E两点.

(1)如图2,当⊙P与边CD相切于点F时,求AP的长;

(2)不难发现,当⊙P与边CD相切时,⊙P与平行四边形ABCD的边有三个公共点,随着AP的变化,⊙P与平行四边形ABCD的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的AP的值的取值围 .

27.(9分)(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE的度数为 °.

(2)小明手中有一矩形纸片ABCD,AB=4,AD=9. 【画一画】

如图2,点E在这矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚); 【算一算】

如图3,点F在这矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A′,B′处,若

AG=,求B′D的长;

【验一验】

如图4,点K在这矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.

2018年江苏省镇江市中学考试数学试卷(试卷+问题详解+解析汇报)

2018年省市中考数学试卷一、填空题(本大题共有12小题,每小题2分,共计24分.)1.(2分)﹣8的绝对值是.2.(2分)一组数据2,3,3,1,5的众数是.3.(2分)计算:(a)=.4.(2分)分解因式:x﹣1=.2235.(2分)若分式有意义,则实数x的取值围
推荐度:
点击下载文档文档为doc格式
9u9840xfe700kc5204u903ypi6bk8900j0x
领取福利

微信扫码领取福利

微信扫码分享