好文档 - 专业文书写作范文服务资料分享网站

利卢埃特河上游水电站项目 - 不列颠哥伦比亚省山区径流式水电项目发电隧洞建设中面临的挑战 - 图文

天下 分享 时间: 加入收藏 我要投稿 点赞

Engineering4(2018)260–266Contents lists available at ScienceDirect

Engineering

Research

TunnelEngineering—Article

UpperLillooetRiverHydroelectricProject:TheChallengesofConstructingaPowerTunnelforRun-of-RiverHydroProjectsinMountainousBritishColumbia

NicholeBoultbeea,?,OliverRobsonb,SergeMoallic,RichHumphriesdaGolderAssociatesLtd.,Squamish,BritishColumbiaV8B0B4,CanadaInnergexRenewableEnergyInc.,Vancouver,BritishColumbiaV6E4E6,CanadacEBCInc.,NorthVancouver,BritishColumbiaV7L0B5,CanadadGolderAssociatesLtd.,Squamish,BritishColumbiaV8B0B4,Canadabarticleinfoabstract

The Upper Lillooet River Hydroelectric Project (ULHP) is a run-of-river power generation scheme located near Pemberton, British Columbia, Canada, consisting of two separate hydroelectric facilities (HEFs) with a combined capacity of 106.7 MW. These HEFs are owned by the Upper Lillooet River Power Limited Partnership and the Boulder Creek Power Limited Partnership, and civil and tunnel construction was completed by CRT-ebc. The Upper Lillooet River HEF includes the excavation of a 6 m wide by 5.5 m high and approximately 2500 m long tunnel along the Upper Lillooet River Valley. The project is in a moun-tainous area; severe restrictions imposed by weather conditions and the presence of sensitive wildlife species constrained the site operations in order to limit environmental impacts. The site is adjacent to the Mount Meager Volcanic Complex, the most recently active volcano in Western Canada. Tunneling conditions were very challenging, including a section through deposits associated with the most recent eruption from Mount Meager Volcanic Complex ($2360 years before the present). This tunnel section included welded breccia and unconsolidated deposits composed of loose pumice, organics (that represent an old forest ?oor), and till, before entering the underlying tonalite bedrock. The construction of this sec-tion of the tunnel required cover grouting, umbrella support, and excavation with a combination of road-header, hydraulic hammer, and drilling-and-blasting method. This paper provides an overview of the project, a summary of the key design and construction schedule challenges, and a description of the suc-cessful excavation of the tunnel through deposits associated with the recent volcanic activity.

ó 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license

Articlehistory:Received31March2017Revised7September2017Accepted22September2017Availableonline13March2018Keywords:Run-of-riverhydroprojectPowertunnelUmbrellasupportCanopytubesVolcanicdepositsPumiceRoadheaderEnvironmentalconstraints1.IntroductionTheUpperLillooetRiverHydroelectricProject(ULHP)isarun-of-riverpowergenerationschemelocatednearPemberton,BritishColumbia,Canada(Fig.1)[1],consistingoftwoseparatehydroelec-tricfacilities(HEFs)withacombinedcapacityof106.7MW.TheseHEFsareownedbytheUpperLillooetRiverPowerLimitedPartner-shipandtheBoulderCreekPowerLimitedPartnership,andcivilandtunnelconstructionwascompletedbyCRT-ebc.Asistypicalforrun-of-riverpowergeneration,theprojectdiverts?owfrom?Correspondingauthor.E-mailaddress:nboultz@hotmail.com(N.Boultbee).theriver,withouttherequirementforasigni?cantdammingstruc-ture,throughapenstock(whichmayormaynotincludeatunnel)toapowerhouse,wherethewaterissubsequentlyreleasedbackintotheriver.Flowintheriverbetweentheintakeandpower-houseisaffectedonlybytheminordisturbanceofthediversion,while?owoutsidetheprojectlimitsisunchanged.FortheUpperLillooetRiver(ULR)HEF,theintakestructurefeedsthe?owintoa2500mlong,6mwide,and5.5mhighpowertunnelthatcon-nectstoa3.6mdiameter,1600mlongsteelpenstock;thisinturnconnectstoasurfacepowerhousethatcontainsfourFrancistur-bineswithacombinedgenerationcapacityof81.4MW.Thedesign?owis53m3ásà1withamaximuminternalheadinthetunnelofapproximately24m,andatotalheadatthepowerhouseof192m.Theprojectwasconstructedbetween2012and2016concurrentlyN.Boultbeeetal./Engineering4(2018)260–266261Fig.1.LocationofUpperLillooetsitewithintheGaribaldiVolcanicBeltinBritishColumbia[1].ywiththeadjacent25.3MWBoulderCreekHEF,whichincludeda2900mlongpowertunnel.

BoththeULRandBoulderCreekHEFtunnelswereexcavatedbythedrilling-and-blastingmethod,usingcomputer-operated,full-facedrillingjumbosandrubber-tiredscooptramsandrocktrucks.Thetunnelsareunlinedexceptforshortsectionswherefaults,shearzones,ordegradablerockswereencountered.TheinvertoftheULRtunnelhasaconcreteinvertslab,whiletheinvertoftheBoulderCreekHEFtunnelisunlined.ThispaperdescribestheULRHEFtunnelanditsconstruction,andelaboratesonhowprojectconstructionproceededthroughsig-ni?cantdif?culties,includinggeologic,climatic,andenvironmen-talchallenges.2.TunnelalignmentandsitelayoutTheULRHEFtunnelgenerallyrunsparalleltothenortheastsideoftheULR;accessthroughoutthesiteisachievedalonganexistingforestserviceroad(FSR).TheULRHEFtunnelwasexcavatedastwoheadings,fromtheupstreamportalatCH0+065toCH0+582.5,andfromthedownstreamportalatCH2+533toCH0+582.5,atagradeof0.4%.Thetunnelintakeandupstreamportalareaccessedfrom49kmalongtheFSR,whichisimmediatelyacrosstheULRfromtheMountMeagerVolcanicComplex(Fig.2)[2].Thedown-streamtunnelportalisaccessedfrom44.7kmalongtheFSR,andliesadjacenttoanecologicallyimportantwaterway,TruckwashCreek.Thepowerhouseisaccessedfrom41.2km,andsitsonthenorthbankoftheLillooetRiver.Eachoftheseindividualworkareasfaceduniquechallenges,asdiscussedinSection4.yThe?gureisprovidedbytheauthor.

3.TunnelingthroughyoungvolcanicdepositsTheexcavationfromtheupstreamportaloftheULRHEFtunnelcrossedthroughtheyoungvolcanicrocksassociatedwiththemostrecenteruptionoftheMountMeagerVolcanicComplex,intoapumicedepositandburiedsoilhorizon,and?nallyintoigneousandmetamorphicbasementrocks.Tunnelingthroughthesedepositspresentedsomemajorchallenges,whicharedescribedlaterinthispaper.Thedownstreamheadingencounteredonlythebasementrocks,whichweregenerallymorecompetentandrequiredlessrocksupport,exceptatfaultsandshearzones.Thebasementrocksectionsofthetunnelarenotdescribedfurtherinthispaper.3.1.PebbleCreekFormationTheupstreamendofthetunnelwasexcavatedthroughpartsofthePebbleCreekFormation,whichcomprisesrecentvolcanicrocksandassociateddepositsfromthe$2360yearsbeforethepresent(BP)MountMeagervolcaniceruptionthatin?lledtheUpperLil-looetValleyandcoveredtheQuaternarysur?cialdepositsandbasementrocks[3,4].The$2360yearsBPeruptionwasprecededbyanejectionofashfalltephra(pumice)thatleftthickdepositsthroughouttheval-ley,anddepositedashupto1000kmaway.Themaineruptionconsistedofahotblock-and-ash?owwithvaryingdegreesofwelding.Theweldedblock-and-ash?ow,labeledasaweldedbrec-cia,wasthemajorityoftherockexcavatedintheupstreamportionofthetunnel(CH0+065toCH0+470).BetweenthisfreshvolcanicrockandthebasementrockisanunconformitycomprisedofQua-ternarysoilsandunconsolidatedvolcanicdeposits.Theunconfor-mitywastunneledthroughbetweenCH0+466andCH0+478,andisreferredtoas‘‘transitionzone”soilsinthispaper,shownschematicallyinFig.3.Thedepositsminedthroughfromtheupstreamportalaredescribedbelowfromyoungesttooldest[2]:??Theweldedbrecciaistypicallygravel-tocobble-sized,sub-roundedtoangularblocksofporphyriticdacitelava,ina?ne-grainedweldedashmatrix.Thedepositisvariablywelded,andistypicallymassivewithlittlejointing.Columnarjointingwasobservedinsomemorestronglyweldedsections—typicallyinthemiddletolowersectionsofthedeposit.Insomelocations,theboundarybetween?ows,orpulsesina?ow,couldbeiden-ti?ed.Belowtheweldedbreccia,athinlayer(<1mthick)ofnon-weldedbrecciawasobserved.TheweldedbrecciawasmappedinthetunnelfromtheupstreamportalatCH0+065toCH0+470.??Athinlayer(<0.5mthick)thatwasinterpretedtobeof?uvialoriginwasencounteredbelowtheweldedbreccia.Thislayerconsistedofsandandgravelwithsomesilt,withareddishbrownupperhorizonunderlainbycoarsesandlayers.??Mostoftheunconsolidateddepositsthatwereencounteredcomprisedpumicefromthe$2360yearsBPeruption.Thepumiceobservedonthesurfaceoccursintheformofloosegraveldepositsatnumerouslocationsthroughoutthevalley,atvolumesthatsupportpumicemining.The5mthicklayerofpumiceencounteredinthetunnelwasmainlygravel-sized,containedburnttrees(Fig.4),andincludedalowerlayerthatwasreddishbrownandorganicrich.??Alayerthatwasinterpretedtobetheforest?ooralongtheval-leysidepriortothe$2360yearsBPeruptionwasobservedbelowthepumice.Thelayerwasofvariablethickness,from10mmto0.5mthick,andwasmadeupofpineneedles,sticks,roots,andfallentrees.Carbondatingofawoodsamplefromthislayerprovidedanageof244514CyearsBP(±68years).262N.Boultbeeetal./Engineering4(2018)260–266Fig.2.SitelayoutwithintheUpperLillooetRiverValley[2].yBP:beforethepresent.Fig.3.Schematictunnelpro?lethroughthetransitionzonesoils,showingthedepositsencounteredalongthetunnelexcavation.boulders,andclay.Thecobblesandbouldersaresub-roundedandofvaryinglithology(granitoidandmetavolcanic).

Tonalitebedrock,whichmakesupthemajorityofthedown-streamtunnelexcavation,wasencounteredbelowthetill.Fig.5showsamixedfacewiththemajorityofthelayersobservedduringtheexcavationofthetransitionzonesoils.3.2.Tunnelin?owsDuringtheinitialdesignfortheproject,therateoftunnelin?owswasanticipatedtobeverylow.However,onceexcavationthroughtheweldedbrecciabegan,itbecameevidentthattheactualin?owswouldfarexceedwhatwasexpected.Waterwasobserved?owingatpressurethroughdiscontinuitiesinthevol-canicrock,andappearedtobedirectlyconnectedtotheULR,whichwaslocatedonlyabout50maway.In?owsoverthe?rst400moftunnelwereestimatedtorangebetweenapproximately7000Láminà1and8000Láminà1.Constructionwatermanagementbecameverycomplexandchallenging,workingadjacenttoariverwithsigni?cantspaceconstraints.Anextensivewatertreatmentfacilitywasdeveloped,whichincorporated?vesettlingponds,theuseof?occulent,andtheuseofcarbondioxide(CO2)toman-agepHwhencompletingconcretingworks,inordertoensurethewaterdischargewasincompliancewithallfederalandprovincialFig.4.Groutedpumicedepositcontainingaburnttree.??Thelowermostlayerencounteredintheunconformitywasgla-cialtill.Theapproximately3mthickdepositisdarkbrown,densetoverydense,andcomposedofsiltysandwithsomecobbles,

yThe?gureisprovidedbytheauthor.

N.Boultbeeetal./Engineering4(2018)260–266263Fig.5.Mixedfaceexcavationwithgroutedpumice,organics,andtilloverlyingtonalitebedrock.Fig.6.ULRandconstructionwatermanagementfacilityattheupstreamportal.environmentalregulations.Fig.6showsanaerialviewoftheset-tlingpondsandwatertreatmentattheupstreamportal.Whilesomewaterin?owswereexpectedwithinthetransitionzonesediments,theratesencounteredintheweldedbrecciaalonefarexceededexpectations.Itwasanticipatedthatifsimilarin?owratesexistedwithintheunconsolidateddeposits,itwouldbeextremelydif?cult,ifnotimpossible,toexcavateandsupportthetunnelsafely.Consequently,acoverandconsolidationgroutingprogramwasinitiatedpriortoexcavationthroughthetransitionzone.3.3.CoverandconsolidationgroutingCovergroutingwasinitiatedfromtheweldedbrecciaapproxi-mately25mbeforeencounteringtheunconsolidateddeposits,inanattempttoreducein?owsintothetunnelheading.Thecovergroutingwasdesignedto‘‘cover”theperimeterofthetunneltoadepththatwouldnotbepenetratedbythedesignedsupport(2.4mlongrockbolts).Asthegroutinghadnotbeeninitiatedwhenlarger-than-expectedin?owswere?rstencountered,itwasunder-stoodthattheoverallvolumeofwater?owingintothetunnelwouldlikelynotdecrease,asanywaterredirectedawayfromtheexcavation,aheadoftheface,couldsimply?owaroundandre-enterthetunnelfrompreviouslyexcavated(butun-grouted)areas.Thereafter,inordertostrengthentheloose,unconsolidateddeposits,andparticularlythegravellypumicedeposit,consolida-tiongroutingwascarriedout.Theprogramwaslaidoutsuchthatthegroutholeswereupto45mlongandtherewasgreaterthan20mofoverlapbetweennestedringsofoutwardlyradiating,equallyspacedgroutholes(Fig.7)[5].Basedonmeasuredin?owsandtheresultsofwatertake(i.e.,Lugeon)testscarriedoutpriortoinjection,theapparentviscosityofthegroutmixinjectedwasincreased(i.e.,thickened)andeachstagewasgroutedtorefusal,atthespeci?edinjectionpressureandatalowtoverylowrateofinjection.Inthismanner,adequategroundimprovementtoallowforstableminingconditionswasachieved.Thegroutingpro-gramisdiscussedindetailinRef.[5].3.4.TunnelingandgroundsupportTunnelexcavationwastypicallycarriedoutbydrilling-and-blastingmethodsthroughtheweldedbrecciaandbedrockoftheULRHEFtunnel.Excavationroundswereupto6mlong;rocksup-portintheweldedbrecciawastypically2.4mlong,2mspacedpatternrockboltswithweldedwire,orchain-linkmesh.Addi-tionalsupportintheformofspot-positionedrockboltsand/orshotcretewasplacedwherenecessary.Whentheexcavationreachedthetransitionzone,theblastpat-ternwasredesigned;shortblastroundswerecompletedfortheupperportionoftheface,whichstillconsistedofhigh-strengthweldedbreccia,whileroadheaderandhammerexcavationwereusedforthelowerportionoftheface,whichexposedgroutedtran-sitionzonesediments.Within7mof?rstencounteringthetransitionzonesediments,theweldedbrecciahadrisenabovethecrownofthetunnel,andthetunnelfacewasfullycomposedofgroutedpumice.Excavationbyroadheaderproceededwellthroughthegroutedpumiceandunderlyingorganicsandtilllayers.Afterafurther5mofexcava-tion,withinafullfaceoftransitionzonesediments,thetonalitebedrockwasencounteredrisingupfromtheinvert.Within11mofmixedsoilandrockconditions,thetunnelwasbacktoafullfaceofsolidbasementrock,andwasexcavatedbyshortblastrounds(Fig.3).Throughthetransitionzone,umbrellasupportwasinstalled.Theumbrellasupportconsistedof0.3mto0.5mspaced12mlongcanopytubes,typicallyinstalledatanangleof8°,with4mofover-lapbetweentubesets.Thecanopytubeswereinstalledfrominverttoinvertfromthebeginningofthesediments,withthenumberinstalleddecreasingasthetonalitebedrockwasencounteredrisingupfromtheinvert.Theumbrellasupportwascombinedwithlat-ticegirdersandshotcretetosupporttheexcavation.Facesupportwasnotrequiredduringexcavation,asastablefacewasmain-tainedduetotheconsolidationgroutingthathadbeencompletedearlier.Fig.7.Schematicofgroutingprogramholelayoutsillustratingoverlappinggroutcovers[5].264N.Boultbeeetal./Engineering4(2018)260–266Installationoftheumbrellasupportthroughthecrownofthetunnel(10o’clockpositionto2o’clockposition),andlatticegirdersandshotcretecontinuedfor40mpastthestartoffullfacerockexcavationinthetonalite,duetoverylowrockcoveroverthetun-nel.Althoughtherewasover200mofgroundcover,probedrillingindicatedlessthan6mofrockcover.Afterafulltunneldiameter(6m)ofrockcoverwasachieved,normalgroundsupportwithrockboltsandshotcretewascontinued.Toprotectagainstinverterosionandpreventunderminingofthefootingsofthelatticegirders,aconcreteinvertslabwasrequiredthroughthetransitionzonesediments.Thisinvertslabwascontinuedthroughtheentire2500mlengthofthetunnelinordertopreventerosionofotherweakzonesthathadbeenencountered,aswellasprovideeaseofaccessforfuturetunnelinspections.Duringconstruction,itwasobservedthatsomezonesoftheweldedbrecciathatweremorepoorlyweldedthanotherswereexperiencingdegradationovertime—thatis,thesurfacesofthewallsandcrownofthetunnel,whichweresolidrockimmediatelyafterexcavation,hadbrokendowntothepointwhereloosesandcouldbescrapedoffthesurface.Laboratorytestingincludingslaketests,modi?edslaketests,ethyleneglycoltesting,andX-raydiffraction(XRD)mineralidenti?cationprovidednoindicationthattherecouldbepotentialdegradationissueswiththerock.How-ever,thinsectionsdididentifyvaryingdegreesofweldingbetweensamplesthatshoweddegradationandthosethatdidnot.Topre-ventfurtherdegradationofthetunnelwallsandpossibleerosionduringtunneloperation,themorepoorlyweldedbrecciawasiden-ti?ed,mapped,andmarkedalongthetunnelcrownandwalls,andthoseareaswerecoveredwitha?nalliningthatconsistedof100mmofshotcretewithweldedwiremeshtoimproveshotcreteadherencetotherock.4.GeneralprojectchallengesInadditiontothegeologicalchallengesthatwereencounteredduringtunneling,numerousotherchallengeswerefacedbytheULHPduetoworkinginremoteBritishColumbia.4.1.LandslideriskTheMountMeagerVolcanicComplex,whichislocateddirectlyacrossthevalleyfromtheupstreamportalandtunnelintakestruc-tures,hasbeenlabeledthemostlandslide-pronemountaininCanada[6].StudiespredatingtheULHPindicatedthattherewasariskoflandslideoccurrence,bothvolcanic[7]andnon-volcanic[6],fromthemountainthatcoulddirectlyimpacttheULR,andhaveimpactsreachingfardownstream.TheProvinceofBritishColumbiahadpreviouslycommissionedthedevelopmentofalandslidemanagementplanin1999toreducetherisktothepublicfromlandslidesoriginatingfromtheMountMeagerVolcanicComplex.ThisplanincludedoperationalshutdownproceduresfortheMeagerValleytopreventaccesstotheareaintheeventofspeci?cclimaticfactorsthatcouldincreasethepotentialforalandslidetooccur,includingrainfallandtemper-aturethresholdsthatcouldleadtoexcessivesnowmelt,andthere-forerunoffonthemountain.InAugustof2010,anoperationalshutdownwasimplementedwhentemperaturethresholdswerereached(greaterthan25°Cfor6consecutivedays),andtheMeagerValleywasclosedtopublicaccess.On6August2010,alandslideoriginatedfromtheCapricornCreekDrainage(amainvalleyoffthesouthsideoftheMountMea-gerVolcanicComplex),whichenteredMeagerCreekandthentheULR.ThelandslidenarrowlymissedcampersintheprovincialcampgroundlocatedintheUpperLillooetValley,justnorthofthecon?uencewithMeagerCreek.Thiscampsitewaspermanentlyclosedafterthe2010landslide.TheCapricornCreekLandslide,astheeventwassubsequentlynamed,wasdeterminedtobethesecond-largestdocumentedlandslideinCanadianhistory[8].Numerousstudieshavedocumentedadditionalpotentialinsta-bilityfromtheMountMeagerVolcanicComplex.TheCapricornCreekLandslideenteredMeagerCreek,andthentheULR,approx-imately3kmsouthoftheproject;thus,itwouldnothavedirectlyimpactedtheprojectoritsinfrastructure(Fig.2).OfparticularinterestfortheULHPwastheeastern?ankofthemountainandtheriskfromtheJobCreekDrainage,whichislocatedjustupstreamoftheULHPintake.Inordertomitigatetheriskduringconstruction,asimilarland-slidemanagementplanwasdevelopedwithLow,High,andExtremeRisksmanagementoutlined.Thismanagementplanincludedaccessrestrictionsforareasoftheprojectthatweredependentonrainfallortemperaturethresholds.Iftemperatureswerehigherthananaverageof25°Cformorethan4consecutivedays,orifmorethan50mmofrainwasreceived,theHighRiskcategorywasenacted;thisinvolvedlogin/logoutproceduresthroughoutmostofthesiteanddaytimetravelonly,aswellasthecompleteclosureoftheupstreamportalandintakeworkareas.TheExtremeRiskthresholdwasexceededassoonastemperaturesreached35°C,ormorethan70mmofrainwasreceivedin24h.UndertheExtremeRiskthreshold,theentireULHPsitewaseffec-tivelyshutdownandtheFSRgateswerelockedtopreventanypublicaccess.Throughouttheproject,thetemperaturethresholdresultedin20daysoflostproductionin2015,and31lostdaysin2016.Therainfallthresholdwasreachedthreetimes,with6daysoflostpro-ductionin2015,andtwotimesin2016,with4dayslost.4.2.Climaticchallenges4.2.1.SummerconstructionOneofthehazardsofworkinginremoteforestedlocationsisforest?res.TheforestsofBritishColumbiaarepronetobothnat-uralandhuman-caused?resinthesummermonths.Inordertoworkinforestedlocationswhenthereisahigh?rerisk,precau-tionsmustbeundertakenbycontractors,includinghaving?re-?ghtingequipmentreadilyavailablethroughoutthesite.However,evenwithprecautionsinplace,theriskstillexists.Inthesummerof2014,almost360000ha(1ha=104m2)oflandburnedinBritishColumbia,thethird-highestlossto?reinthehis-toryoftheprovince.The2015?reseasonwasaboveaverageaswell,resultinginadditionalpersonnelbeingbroughtinfromaroundtheworldtohelp.Oneofthelargest?resintheprovincein2015wastheBoulderCreekForestFire;thiswasstartedbyalightningstrikenearthetopoftheBoulderCreekDrainage(Fig.2),whichproceededtoburnover6700haofland[9].TheBoulderCreekForestFirestartedon30June2015,approx-imately5kmuptheBoulderCreekValleyfromtheprojectsite(Fig.2).The?reremainedrelativelysmallforalmostaweek,andthenmoveddownthevalleytowardtheproject.On4July2015,the?rehadcrestedtheridgeintotheUpperLillooetValley,andtheprojectsitewasevacuated(Fig.8).Theprojectsiteremainedundermandatoryevacuationforalmost2months.However,evenwiththelargeamountsofforestthatwereburnedthroughouttheprojectarea,onlyrelativelyminorphysicalprojectlosseswereexperienced;themaindamagewastotherecentlycompletedtransmissionline,andtherewassigni?cantimpactontheoverallprojectschedule.Shortlyaftertheforest?reevacuationwaslifted,largeamountsofrainfalloccurred,whichresultedinsigni?cant?oodingoftheULRanddebris?owsfromtributaries.TheaccessFSRwasdam-agedinnumerousplaces;accesstothesitewascutofffor2days,

利卢埃特河上游水电站项目 - 不列颠哥伦比亚省山区径流式水电项目发电隧洞建设中面临的挑战 - 图文

Engineering4(2018)260–266ContentslistsavailableatScienceDirectEngineeringResearchTunnelEngineering—ArticleUpperLillooetRiverHydroelectricProject:TheChallengesofConst
推荐度:
点击下载文档文档为doc格式
9tygm0d8fe8qp2012imx4yj364q3d4011m6
领取福利

微信扫码领取福利

微信扫码分享