好文档 - 专业文书写作范文服务资料分享网站

高中数学选修2-2精品学案:3.1.2 复数的几何意义

天下 分享 时间: 加入收藏 我要投稿 点赞

人教版高中数学选修2-2

3.1.2 复数的几何意义

学习目标

1.理解可以用复平面内的点或以原点为起

点的向量来表示复数及它们之间的一一对应关系.2.掌握实轴、虚轴、模等概念.3.掌握用向量的模来表示复数的模的方法.

1

人教版高中数学选修2-2

知识点一 复平面

思考1 实数可用数轴上的点来表示,类比一下,复数怎样来表示呢?

思考2 判断下列命题的真假:

①在复平面内,对应于实数的点都在实轴上; ②在复平面内,对应于纯虚数的点都在虚轴上; ③在复平面内,实轴上的点所对应的复数都是实数; ④在复平面内,虚轴上的点所对应的复数都是纯虚数; ⑤在复平面内,对应于非纯虚数的点都分布在四个象限.

梳理 建立了直角坐标系来表示复数的平面叫做__________,x轴叫做________,y轴叫做________.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.

知识点二 复数的几何意义

2

人教版高中数学选修2-2

知识点三 复数的模

→→

复数z=a+bi(a,b∈R),对应的向量为OZ,则向量OZ的模r叫做复数z=a+bi的模,记作______或________.由模的定义可知:|z|=|a+bi|=r=______(r≥0,r∈R).

类型一 复数与复平面内的点的关系

例1 实数x分别取什么值时,复数z=(x2+x-6)+(x2-2x-15)i对应的点Z在: (1)第三象限;

(2)直线x-y-3=0上. 引申探究

若例1中的条件不变,其对应的点在: (1)虚轴上;

3

人教版高中数学选修2-2 (2)第四象限.

反思与感悟 按照复数和复平面内所有点所成的集合之间的一一对应关系,每一个复数都对应着一个有序实数对,只要在复平面内找出这个有序实数对所表示的点,就可根据点的位置判断复数实部、虚部的取值.

跟踪训练1 实数m取什么值时,复数z=(m2+5m+6)+(m2-2m-15)i (1)对应的点在x轴上方;

(2)对应的点在直线x+y+4=0上.

类型二 复数与复平面内的向量的关系

→→→→

例2 (1)向量OZ1对应的复数是5-4i,向量OZ2对应的复数是-5+4i,则OZ1+OZ2对应的复数是( ) A.-10+8i C.0

B.10-8i D.10+8i

→→→

(2)设O是原点,向量OA,OB对应的复数分别为2-3i,-3+2i,那么向量BA对应的复数是( ) A.-5+5i C.5+5i

B.-5-5i D.5-5i

反思与感悟 (1)根据复数与平面向量的对应关系,可知当平面向量的起点在原点时,向量的终点对应的复数即为向量对应的复数.反之复数对应的点确定后,从原点引出的指向该点的有向线段,即为复数对应的向量.

(2)解决复数与平面向量一一对应的问题时,一般以复数与复平面内的点一一对应为工具,实现复数、复平面内的点、向量之间的转化.

跟踪训练2 (1)在复平面内,O是原点,向量OA对应的复数为2+i,若点A关于实轴的对称

4

人教版高中数学选修2-2

点为点B,则向量OB对应的复数为________.

(2)复数z=3+4i对应的向量OZ所在直线的斜率为______________.

类型三 复数的模的计算

例3 若复数z=1+ai(i是虚数单位)的模不大于2,则实数a的取值范围是__________. 反思与感悟 利用模的定义将复数模的条件转化为其实部、虚部满足的条件,是一种复数问题实数化思想.

跟踪训练3 已知0

B.(1,3) D.(1,10)

1.复数z=-1-2i(i为虚数单位)在复平面内对应的点位于( ) A.第一象限 C.第三象限

B.第二象限 D.第四象限

→→

2.若OZ=(0,-3),则OZ对应的复数为( ) A.0 C.-3i

B.-3 D.3

3.在复平面内表示复数z=(m-3)+2mi的点在直线y=x上,则实数m的值为________. 4.已知3-4i=x+yi(x,y∈R),则|1-5i|,|x-yi|,|y+2i|的大小关系为________________.

5

高中数学选修2-2精品学案:3.1.2 复数的几何意义

人教版高中数学选修2-23.1.2复数的几何意义学习目标1.理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系.2.掌握实轴、虚轴、模等概念.3.掌握用向量的模来表示复数的模的方法.1人教版高中数学选修2-2知识点一复平面<
推荐度:
点击下载文档文档为doc格式
9tafi2ffha7px008twlp8xswm2yhl0015ls
领取福利

微信扫码领取福利

微信扫码分享