好文档 - 专业文书写作范文服务资料分享网站

(名师名校推荐)2020-2021最新普通高等学校招生全国统一考试数学试题理(全国卷2,含解析)

天下 分享 时间: 加入收藏 我要投稿 点赞

资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.

(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.

以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.

点睛:若已知回归直线方程,则可以直接将数值代入求得特定要求下的预测值;若回归直线方程有待定参数,则根据回归直线方程恒过点19. 设抛物线

(1)求的方程;

(2)求过点,且与的准线相切的圆的方程. 【答案】(1) y=x–1,(2)

【解析】分析:(1)根据抛物线定义得

,再联立直线方程与抛物线方程,利用韦求参数.

的直线与交于,两点,

的焦点为,过且斜率为

达定理代入求出斜率,即得直线的方程;(2)先求AB中垂线方程,即得圆心坐标关系,再根据圆心到准线距离等于半径得等量关系,解方程组可得圆心坐标以及半径,最后写出圆的标准方程.

详解:(1)由题意得F(1,0),l的方程为y=k(x–1)(k>0). 设A(x1,y1),B(x2,y2). 由

,故.

所以.

由题设知,解得k=–1(舍去),k=1.

11

因此l的方程为y=x–1.

(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为

,即

设所求圆的圆心坐标为(x0,y0),则

解得

因此所求圆的方程为

点睛:确定圆的方程方法

(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法 ①若已知条件与圆心从而求出

的值;

和半径有关,则设圆的标准方程依据已知条件列出关于

的方程组,

②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、E、F的方程组,进而求出D、E、F的值. 20. 如图,在三棱锥

(1)证明:(2)若点在棱

平面

中,

,求

与平面

所成角的正弦值.

,为

的中点.

上,且二面角

【答案】(1)见解析(2)

【解析】分析:(1)根据等腰三角形性质得PO垂直AC,再通过计算,根据勾股定理得PO垂直

12

OB,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解出平面PAM一个法向量,利用向量数量积求出两个法向量夹角,根据二面角与法向量夹角相等或互补关系列方程,解得M坐标,再利用向量数量积求得向量PC与平面PAM法向量

夹角,最后根据线面角与向量夹角互余得结果.

详解:(1)因为,为的中点,所以

,且

.

连结.因为,所以

为等腰直角三角形,

且,

. 由知. 由

平面

.

(2)如图,以为坐标原点,

的方向为轴正方向,建立空间直角坐标系

.

由已知得

取平面的法向量

.

设,则

.

设平面的法向量为

.

,可取,

所以.由已知得.

所以.解得(舍去),.

13

所以所以

与平面

.又,所以.

所成角的正弦值为.

点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”. 21. 已知函数

(1)若(2)若

,证明:当在

时,

只有一个零点,求.

【答案】(1)见解析(2)

详解:(1)当设函数当而

时,,故当

时,等价于,则

单调递减.

,所以时,

在,即.

(2)设函数在(i)当(ii)当当所以故

只有一个零点当且仅当时,时,时,在

;当

单调递减,在是

在只有一个零点.

没有零点;

. 时,单调递增.

的最小值.

14

①若②若③若

,即,即,即

,,

在在

没有零点; 只有一个零点; ,所以

有一个零点,

,由于

由(1)知,当故

时,,所以

有两个零点. .

有一个零点,因此

综上,只有一个零点时,

点睛:利用函数零点的情况求参数值或取值范围的方法 (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解.

(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.

(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。

22. [选修4-4:坐标系与参数方程] 在直角坐标系

中,曲线的参数方程为

(为参数),直线的参数方程为

(为参数).

(1)求和的直角坐标方程;

(2)若曲线截直线所得线段的中点坐标为【答案】(1)当方程为

.(2)

时,的直角坐标方程为

,求的斜率.

,当

时,的直角坐标

【解析】分析:(1)根据同角三角函数关系将曲线的参数方程化为直角坐标方程,根据代入消元法将直线的参数方程化为直角坐标方程,此时要注意分线参数方程代入曲线的直角坐标方程,根据参数几何意义得得的斜率.

详解:(1)曲线的直角坐标方程为

两种情况.(2)将直之间关系,求得

,即

15

(名师名校推荐)2020-2021最新普通高等学校招生全国统一考试数学试题理(全国卷2,含解析)

资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对
推荐度:
点击下载文档文档为doc格式
9t7kx1lt511qw0b8cvba7dd7d92wae01amw
领取福利

微信扫码领取福利

微信扫码分享