所以g(x)?21f(x)?[(1?a?b)x??a]在x?1两边附近的函数值异号,则
32x?1不是g(x)的极值点.
而g(x)1121?x3?ax2?bx?(1?a?b)x??a,且 3232g?(x)?x2?ax?b?(1?a?b)?x2?ax?a?1?(x?1)(x?1?a).
若1??1?a,则x?1和x??1?a都是g(x)的极值点.
1?4b?8,得b??1,故f(x)?x3?x2?x.
321解法二:同解法一得g(x)?f(x)?[(1?a?b)x??a]
3213a3?(x?1)[x2?(1?)x?(2?a)]. 322所以1??1?a,即a??2,又由a2因为切线l在点A(1,f(1))处穿过y?f(x)的图象,所以g(x)在x?1两边附近的函数值异号,于是
?1?m2).
存在m1,m2(m1当m1?x?1时,g(x)?0,当1?x?m2时,g(x)?0; ?x?1时,g(x)?0,当1?x?m2时,g(x)?0.
或当m1设h(x)3a??3a???x2??1??x??2??,则
2??2??当m1?x?1时,h(x)?0,当1?x?m2时,h(x)?0; ?x?1时,h(x)?0,当1?x?m2时,h(x)?0.
或当m1由h(1)?0知x?1是h(x)的一个极值点,则h(1)?2?1?1?所以a??2,又由a
23a?0, 21?4b?8,得b??1,故f(x)?x3?x2?x.
3
高中数学导数练习题
所以g(x)?21f(x)?[(1?a?b)x??a]在x?1两边附近的函数值异号,则32x?1不是g(x)的极值点.而g(x)1121?x3?ax2?bx?(1?a?b)x??a,且3232g?(x)?x2?ax?b?(1?a?b)?x2?ax?a?1?(x?1)(x?1?a).若1??1?a,则x?1和x??1?a都是g(
推荐度:
点击下载文档文档为doc格式