好文档 - 专业文书写作范文服务资料分享网站

专升本高数公式大全

天下 分享 时间: 加入收藏 我要投稿 点赞

.. . . ..

高等数学公式

1(tgx)??sec2x(ctgx)???csc2x(secx)??secx?tgx(cscx)???cscx?ctgx(ax)??axlna(logax)??1xlna(arcsinx)??1?x21(arccosx)???1?x21(arctgx)??1?x21(arcctgx)???1?x2?tgxdx??lncosx?C?ctgxdx?lnsinx?C?secxdx?lnsecx?tgx?C?cscxdx?lncscx?ctgx?Cdx1x?arctg?C?a2?x2aadx1x?a?ln?x2?a22ax?a?Cdx1a?x??a2?x22alna?x?Cdxx?arcsin?C?a2?x2a?2ndx2?sec?cos2x?xdx?tgx?Cdx2?sin2x??cscxdx??ctgx?C?secx?tgxdx?secx?C?cscx?ctgxdx??cscx?Cax?adx?lna?Cx?shxdx?chx?C?chxdx?shx?C?dxx2?a2?ln(x?x2?a2)?C?2In??sinxdx??cosnxdx?00n?1In?2n???导数公式: 基本积分表:

x2a22x?adx?x?a?ln(x?x2?a2)?C22x2a2222x?adx?x?a?lnx?x2?a2?C22x2a2x222a?xdx?a?x?arcsin?C22a22. . . .v

.. . . ..

三角函数的有理式积分:

2u1?u2x2dusinx?, cosx?, u?tg, dx?

21?u21?u21?u2一些初等函数: 两个重要极限:

ex?e?x双曲正弦:shx?2ex?e?x双曲余弦:chx?2shxex?e?x双曲正切:thx??chxex?e?xarshx?ln(x?x2?1)archx??ln(x?x2?1)11?xarthx?ln21?xsinxlim?1x?0x

1xlim(1?)?e?2.718281828459045...x??x

三角函数公式: ·诱导公式:

函数 sin 角A cos tg ctg . . . .v

.. . . ..

-α 90°-α 90°+α 180°-α -sinα cosα cosα cosα sinα sinα -tgα ctgα -ctgα tgα -sinα -ctgα -tgα -cosα -tgα -ctgα ctgα tgα 180°+α -sinα -cosα tgα 270°-α -cosα -sinα ctgα 270°+α -cosα sinα 360°-α -sinα cosα cosα -ctgα -tgα -tgα tgα -ctgα ctgα 360°+α sinα

sin(???)?sin?cos??cos?sin?cos(???)?cos?cos??sin?sin?tg??tg?tg(???)?1?tg??tg?ctg??ctg??1ctg(???)?ctg??ctg?sin??sin??2sin???22??????sin??sin??2cossin22??????cos??cos??2coscos22??????cos??cos??2sinsin22cos???·和差角公式: ·和差化积公式:

. . . .v

.. . . ..

·倍角公式:

sin2??2sin?cos?cos2??2cos2??1?1?2sin2??cos2??sin2?ctg2??1ctg2??2ctg?2tg?tg2??1?tg2?

·半角公式:

sin3??3sin??4sin3?cos3??4cos3??3cos?3tg??tg3?tg3??1?3tg2?sintg?2????1?cos??1?cos?            cos??2221?cos?1?cos?sin??1?cos?1?cos?sin???  ctg????1?cos?sin?1?cos?21?cos?sin?1?cos?abc???2R ·余弦定理:c2?a2?b2?2abcosC sinAsinBsinC?2

·正弦定理:

·反三角函数性质:arcsinx?

?2?arccosx   arctgx??2?arcctgx

高阶导数公式——莱布尼兹(Leibniz)公式:

(uv)(n)k(n?k)(k)??Cnuvk?0n?u(n)v?nu(n?1)v??n(n?1)(n?2)n(n?1)?(n?k?1)(n?k)(k)uv?????uv???uv(n)2!k!

中值定理与导数应用:

拉格朗日中值定理:f(b)?f(a)?f?(?)(b?a)f(b)?f(a)f?(?)柯西中值定理:?F(b)?F(a)F?(?)

当F(x)?x时,柯西中值定理就是拉格朗日中值定理。曲率:

. . . .v

.. . . ..

弧微分公式:ds?1?y?2dx,其中y??tg?平均曲率:K???.??:从M点到M?点,切线斜率的倾角变化量;?s:MM?弧长。?sy????d?M点的曲率:K?lim??.

23?s?0?sds(1?y?)直线:K?0;1半径为a的圆:K?.a定积分的近似计算:

b矩形法:?f(x)?abb?a(y0?y1???yn?1)nb?a1[(y0?yn)?y1???yn?1]n2b?a[(y0?yn)?2(y2?y4???yn?2)?4(y1?y3???yn?1)]3n

梯形法:?f(x)?ab抛物线法:?f(x)?a定积分应用相关公式:

功:W?F?s水压力:F?p?Amm引力:F?k122,k为引力系数

rb1函数的平均值:y?f(x)dxb?a?a1均方根:f2(t)dt?b?aa空间解析几何和向量代数:

b. . . .v

专升本高数公式大全

......高等数学公式1(tgx)??sec2x(ctgx)???csc2x(secx)??secx?tgx(cscx)???cscx?ctgx(ax)??axlna(logax)??
推荐度:
点击下载文档文档为doc格式
9sq3f5hrqm8mpoj7ocb09o8y29wtcx00z4o
领取福利

微信扫码领取福利

微信扫码分享