概率论与数理统计习题答案 精选版
浙大第四版
说明:剩余习题在学习辅导与习题选解
第一章 概率论的基本概念
1. 写出下列随机试验的样本空间
(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)
o1n?100?S???,???,n表小班人数
n??nn(3)生产产品直到得到10件正品,记录生产产品的总件数。([一] 2)
S={10,11,12,………,n,………}
(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))
S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}
2. 设A,B,C为三事件,用A,B,C的运算关系表示下列事件。
(1)A发生,B与C不发生。 表示为:
ABC或A- (AB+AC)或A- (B∪C)
(2)A,B都发生,而C不发生。 表示为:
ABC或AB-ABC或AB-C
表示为:A+B+C
(3)A,B,C中至少有一个发生 (4)A,B,C都发生, (5)A,B,C都不发生,
表示为:ABC 表示为:ABC或S- (A+B+C)或A?B?C
(6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生 相当于AB,BC,AC中至少有一个发生。故 表示为:AB?BC?AC。 (7)A,B,C中不多于二个发生。
相当于:A,B,C中至少有一个发生。故 表示为:A?B?C或ABC
(8)A,B,C中至少有二个发生。
相当于:AB,BC,AC中至少有一个发生。故 表示为:AB+BC+AC
6. 在房间里有10人。分别佩代着从1号到10号的纪念章,任意选3人记录其纪念章的号码。 (1)求最小的号码为5的概率。
记“三人纪念章的最小号码为5”为事件A
10?∵ 10人中任选3人为一组:选法有??3?种,且每种选法等可能。 ??5?又事件A相当于:有一人号码为5,其余2人号码大于5。这种组合的种数有1???2? ??∴
5?1???2????1 P(A)?12?10??3???(2)求最大的号码为5的概率。
10?记“三人中最大的号码为5”为事件B,同上10人中任选3人,选法有??3?种,且每种选法等可能,又事??4?件B相当于:有一人号码为5,其余2人号码小于5,选法有1???2?种 ??7. 某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶,红漆3桶。在搬运中所标笺脱落,交货人随意将这些标笺重新贴,问一个定货4桶白漆,3桶黑漆和2桶红漆顾客,按所定的颜色如数得到定货的概率是多少?
记所求事件为A。
9在17桶中任取9桶的取法有C17种,且每种取法等可能。
432?C4?C3取得4白3黑2红的取法有C10
故
432C10?C4?C3252P(A)?? 62431C178. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1)求恰有90个次品的概率。 记“恰有90个次品”为事件A
1500?∵ 在1500个产品中任取200个,取法有??200?种,每种取法等可能。
??400??1100?200个产品恰有90个次品,取法有??90??110?种
????∴
?400??1100??90??110????
P(A)???1500??200???(2)至少有2个次品的概率。 记:A表“至少有2个次品”
1100?B0表“不含有次品”,B1表“只含有一个次品”,同上,200个产品不含次品,取法有??200?种,200个产
??400??1100?品含一个次品,取法有??1??199?种
????∵ A?B0?B1且B0,B1互不相容。
∴
??1100??400??1100???1??199????200??????
P(A)?1?P(A)?1?[P(B0)?P(B1)]?1?????15001500????????200??200????????9. 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少? 记A表“4只全中至少有两支配成一对” 则A表“4只人不配对”
10?∵ 从10只中任取4只,取法有??4?种,每种取法等可能。
??5?4要4只都不配对,可在5双中任取4双,再在4双中的每一双里任取一只。取法有??4??2
??11. 将三个球随机地放入4个杯子中去,问杯子中球的最大个数分别是1,2,3,的概率各为多少? 记Ai表“杯中球的最大个数为i个” i=1,2,3, 三只球放入四只杯中,放法有43种,每种放法等可能
对A1:必须三球放入三杯中,每杯只放一球。放法4×3×2种。 (选排列:好比3个球在4个位置做排列)
2?4?3种。 对A2:必须三球放入两杯,一杯装一球,一杯装两球。放法有C32(从3个球中选2个球,选法有C3,再将此两个球放入一个杯中,选法有4种,最后将剩余的1球
放入其余的一个杯中,选法有3种。
对A3:必须三球都放入一杯中。放法有4种。(只需从4个杯中选1个杯子,放入此3个球,选法有4种) 12. 50个铆钉随机地取来用在10个部件,其中有三个铆钉强度太弱,每个部件用3只铆钉,若将三只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱,问发生一个部件强度太弱的概率是多少?
记A表“10个部件中有一个部件强度太弱”。 法一:用古典概率作:
把随机试验E看作是用三个钉一组,三个钉一组去铆完10个部件(在三个钉的一组中不分先后次序。但10组钉铆完10个部件要分先后次序)
3333?C47?C44???C23对E:铆法有C50种,每种装法等可能
3333?C47?C44??C23对A:三个次钉必须铆在一个部件上。这种铆法有〔C3〕×10种
法二:用古典概率作
把试验E看作是在50个钉中任选30个钉排成一列,顺次钉下去,直到把部件铆完。(铆钉要计先后次序)
3
对E:铆法有A50种,每种铆法等可能
对A:三支次钉必须铆在“1,2,3”位置上或“4,5,6”位置上,…或“28,29,30”位置上。这种铆
327327327327?A47?A3?A47????A3?A47?10?A3?A47法有A3种
14. (1) 已知P(A)?0.3,P(B)?0.4,P(AB)?0.5,求P(B|A?B)。 解一: P(A)?1?P(A)?0.7,P(B)?1?P(B)?0.6,A?AS?A(B?B)?AB?AB注意(AB)(AB)??.
故有
P (AB)=P (A)-P (AB)=0.7-0.5=0.2。
再由加法定理,
P (A∪B)= P (A)+ P (B)-P (AB)=0.7+0.6-0.5=0.8
于是P(B|A?B)?P[B(A?B)]P(AB)0.2???0.25
P(A?B)P(A?B)0.8 (2) P(A)?111,P(B|A)?,P(A|B)?,求P(A?B)。 43211?定义P(AB)P(A)P(B|A)由已知条件143?P(B)?1 ???????有?解:由P(A|B)P(B)P(B)2P(B)6由乘法公式,得P(AB)?P(A)P(B|A)?1 121111??? 46123由加法公式,得P(A?B)?P(A)?P(B)?P(AB)?15. 掷两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为1点的概率(用两种方法)。
解:(方法一)(在缩小的样本空间SB中求P(A|B),即将事件B作为样本空间,求事件A发生的概率)。 掷两颗骰子的试验结果为一有序数组(x, y)(x, y=1,2,3,4,5,6)并且满足x,+y=7,则样本空间为 S={(x, y)| (1, 6 ), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)} 每种结果(x, y)等可能。
A={掷二骰子,点数和为7时,其中有一颗为1点。故P(A)?方法二:(用公式P(A|B)?21?} 63P(AB) P(B)S={(x, y)| x =1,2,3,4,5,6; y = 1,2,3,4,5,6}}每种结果均可能
A=“掷两颗骰子,x, y中有一个为“1”点”,B=“掷两颗骰子,x,+y=7”。则P(B)?612, ?,P(AB)?2266622P(AB)21?6?? 故P(A|B)?P(B)163616. 据以往资料表明,某一3口之家,患某种传染病的概率有以下规律:P(A)=P{孩子得病}=0.6,P (B|A)=P{母亲得病|孩子得病}=0.5,P (C|AB)=P{父亲得病|母亲及孩子得病}=0.4。求母亲及孩子得病但父亲未得病的概率。
解:所求概率为P (ABC)(注意:由于“母病”,“孩病”,“父病”都是随机事件,这里不是求P (C|AB)
P (AB)= P(A)=P(B|A)=0.6×0.5=0.3, P (C|AB)=1-P (C |AB)=1-0.4=0.6.
从而P (ABC)= P (AB) · P(C|AB)=0.3×0.6=0.18.
17. 已知10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概率。
(1)二只都是正品(记为事件A)
法一:用组合做 在10只中任取两只来组合,每一个组合看作一个基本结果,每种取法等可能。 法二:用排列做 在10只中任取两个来排列,每一个排列看作一个基本结果,每个排列等可能。 法三:用事件的运算和概率计算法则来作。 记A1,A2分别表第一、二次取得正品。 (2)二只都是次品(记为事件B) 法一:
P(B)?2C22C10?1 45