图9 图10(备用) 图11(备用)
(1)解:∵∠B=30°∠ACB=90°∴∠BAC=60° ∵AD=AE ∴∠AED=60°=∠CEP ∴∠EPC=30°
∴三角形BDP为等腰三角形 ∵△AEP与△BDP相似
∴∠EAP=∠EPA=∠DBP=∠DPB=30° ∴AE=EP=1
11EP= 22(2)过点D作DQ⊥AC于点Q,且设AQ=a,BD=x ∵AE=1,EC=2 ∴QC=3-a
∵∠ACB=90°
∴△ADQ与△ABC相似 ∴在RT△ECP中,EC=∴即
ADAQ ?ABAC1a3 ?,∴a?x?13x?1222?3?∵在RT△ADQ中DQ?AD?AQ?1????x?1??∵
x2?2x?8
x?1DQAD ?BCABx2?2x?81x?1∴ ?xx?1解之得x=4,即BC=4 过点C作CF//DP
∴△ADE与△AFC相似,
ADFBECPQAEAD,即AF=AC,即DF=EC=2, ?ACAF∴BF=DF=2
∵△BFC与△BDP相似 ∴∴
BFBC21???,即:BC=CP=4 BDBP42EC21?? CP42(3)过D点作DQ⊥AC于点Q,则△DQE与△PCE相似,设AQ=a,则QE=1-a ∴tan∠BPD=∴
1QEDQ且tan?BPD? ?ECCP3∴DQ?3?1?a?
∵在Rt△ADQ中,据勾股定理得:AD2?AQ2?DQ2
即:12?a2???3?1?a???,解之得a?1(舍去)a?∵△ADQ与△ABC相似 4ADDQAQ4???5?∴ ABBCAC1?x5?5x24 5∴AB?5?5x3?3x ,BC?445?5x3?3x??1?x?3?3x 44
∴三角形ABC的周长y?AB?BC?AC?即:y?3?3x,其中x>0