好文档 - 专业文书写作范文服务资料分享网站

中考数学总复习资料(备考大全)

天下 分享 时间: 加入收藏 我要投稿 点赞

例3 已知:如图5-127,在ΔABC中,AB=AC,D为BC中点,DE⊥AC于E,F为DE中点,BE交AD于N,AF交BE于M.求证:AF⊥BE. 分析:

(1)分解基本图形探求解题思路.

(2)总结利用相似三角形的性质证明两角相等,进一步证明两直线位置关系(平行、垂直等)

AD的方法,利用ΔADE∽ΔDCE得到DC?DECF

ADCE,结合∠3=∠C,得到ΔBEC∽Δ结合中点定义得到BCAFD,因此∠1=∠2.进一步可 得到AF⊥BE.

(3)总结证明四条线段成比例的常用方法:①比例的定义;②平行线分线段成比例定理;③ 三角形相似的预备定理;④直接利用相似三角形的性质;⑤利用中间比等量代换;⑥利用面 积关系.

例4 已知:如图5-128,RtΔABC中,∠ACB=90°,CD⊥AB于D,DE⊥AC于E,DF⊥BC于F.

求证:(1)CD3=AAE·BF·AB;(2)BC2:AC2=CE:EA;(3)BC3:AC3=BF:AE. 分析:

掌握基本图形“RtΔABC,∠C=90°,CD⊥AB于D”中的常用结论.

①勾股定理:AC2+BC2=AB2. ②面积公式:AC·BC=AB·CD.

③三个比例中项:AC2=AD·AB,BC2=BD·BA,CD2=DA·DB.

?DF

AC22BD ⑤BC证明:第(1)题: ∵ CD2=AD·BD,

∴ CD4=AD2·BD2=(AE·AC)·(BF·BC)=(AE·BF)(AC·BC) =(AE·BF)·(AB·CD). 第(2)题:

BC22?ADAD?AB ∵AC证. 第(3)题:

BC∵AC22?BD?BA?BDBDAD,利用ΔBDF∽ΔDAE,证得AD?DFEA?CEAE,命题得

?BD?ABAD?AB?BDAD,

BC ∴AC44?BDAD22?BF?BCBC33AE?AC,∴AC?BFAE

第五章:解直角三角形

知识点:

一、锐角三角函数:在直角三角形ABC中,∠C是直角,如图5-1 1、正弦:把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA? 2、余弦:把锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA? 3、正切:把锐角A的对边与邻边的比叫做∠A的正切,记作tanA? 4、余切:把锐角A的邻边与对边的比叫做∠A的余切,记作cotA? 说明:由定义可以看出tanA·cotA=l(或写成tanA?1cotAacbcabba

5、锐角三角函数:锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数 说明:锐角三角函数都不能取负值。 0< sinA< l; 0<cosA<;l

6、锐角的正弦和余弦之间的关系任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值。

即sinA=cos(90°一 A)=cosB;cosA=sin(90°一A)=sinB

7、锐角的正切和余切之间的关系任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。

即tanA=cot(90°一 A)=cotB;cotA=tan(90°-A)= tanB 说明:式中的90°一A = B 。 8、三角函数值的变化规律

(1)当角度在0°— 90°间变化时,正弦值(正切值随着角度的增大(或减小)而增大(或减小)

(2)当角度在0°—90°间变化时,余弦值(余切值)随着角度的增大(或减小)而减小(或增大)。

9、同角三角函数关系公式 (1)sin2A?cos2B?1;(2)tanA?1cotA;(3) tanA=

sinAcosA

10.一些特殊角的三角函数值

二、解直角三角形

由直角三角形中,除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。

若直角三角形ABC中,∠C=90°,那么A、B、C,a,b,c中除∠C=90°外,其余5个元素之间有关系:

(l)a2?b2?c2;(2)∠A十∠B=90°;

(3)sinA?ac

;cosA?bc;tanA?ab;cotA?ba

所以,只要知道其中的2个元素(至少有一个是边),就可以求出其余3个未知数。 例如Rt△ABC中,∠C=90°,且∠A=30°,a=5, 则由:

bcac?sinA?sin30???12?c?10

?sinB?sin60?32?b?53

A?B?90??B?60?

?b?53,c?10,B?60? 三、应用举例

是实际问题中的解直角三角形,或者说用解直角三角形的方法解决实际问题。 例如一杆AB直立地面,从D点看杆顶A,仰角为60°,从C点看杆顶A,仰角为30°(如图5~2)若CD长为10米,求杆AB的高。

解:设AB=x

即tan60??xBD,tan30??x10?BD,

??x?3BD即? ??3?10?BD3即杆高约8.66米,应用题中要注意: (1)仰角,俯角见图5-3

(2)跨度、中柱:如房屋顶人字架跨度为AB,见图5—4

3x?10?1x,2x?103,∴x?53

(3)深度、燕尾角

如燕尾槽的深度,见图5—5

(4)坡度、坡角

hl?tana(a叫坡角)

见图5一6坡度i=7坡度的垂直高度h水平宽度l,i?例题:

例1、根据下列条件,解直角三角形.

例2、在平地上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测得山顶A的仰角为45°,求山高AB.

分析:此题一方面可引导学生复习仰角、俯角的概念,同时,可引导学生加以分析:

如图6-39,根据题意可得AB⊥BC,得∠ABC=90°,△ABD和△ABC都是直角三角形,且C、D、B在同一直线上,由∠ADB=45°,AB=BD,

CD=20米,可得BC=20+AB,在Rt△ABC中,∠C=30°,可得AB与BC之间的关系,因此山高AB可求.学生在分析此题时遇到的困难是:在Rt△ABC中和Rt△ABD中,都找不出一条已知边,而题目中的已知条件CD=20米又不会用.

解:略

例题3如图6-40,水库的横截面是梯形,坝顶宽6m,坝高23m,斜坡AB

底宽AD(精确到0.1m).

分析:坡度问题是解直角三角形的一个重要应用,学生在解坡度问题时常遇到以下问题:

1.对坡度概念不理解导致不会运用题目中的坡度条件; 2.坡度问题计算量较大,学生易出错;

3.常需添加辅助线将图形分割成直角三角形和矩形.

几何部分 第六章:圆

知识点:

一、圆

1、圆的有关性质

在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。 由圆的意义可知:

圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。

圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。 圆心相同,半径不相等的两个圆叫同心圆。 能够重合的两个圆叫等圆。 同圆或等圆的半径相等。

在同圆或等圆中,能够互相重合的弧叫等弧。 二、过三点的圆 l、过三点的圆

过三点的圆的作法:利用中垂线找圆心

定理不在同一直线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。 2、反证法

反证法的三个步骤:

①假设命题的结论不成立;

②从这个假设出发,经过推理论证,得出矛盾;

③由矛盾得出假设不正确,从而肯定命题的结论正确。 例如:求证三角形中最多只有一个角是钝角。 证明:设有两个以上是钝角 则两个钝角之和>180°

与三角形内角和等于180°矛盾。

∴不可能有二个以上是钝角。

即最多只能有一个是钝角。 三、垂直于弦的直径

圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。 弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。 推理2:圆两条平行弦所夹的弧相等。 四、圆心角、弧、弦、弦心距之间的关系

中考数学总复习资料(备考大全)

例3已知:如图5-127,在ΔABC中,AB=AC,D为BC中点,DE⊥AC于E,F为DE中点,BE交AD于N,AF交BE于M.求证:AF⊥BE.分析:(1)分解基本图形探求解题思路.(2)总结利用相似三角形的性质证明两角相等,进一步证明两直线位置关系(平行、垂直等)AD的方法,利用ΔADE∽ΔDCE得到DC?DECF
推荐度:
点击下载文档文档为doc格式
9shxo13vv238gut0yjsg
领取福利

微信扫码领取福利

微信扫码分享