绝密★启用前
2018年普通高等学校招生全国统一考试
文科数学
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只
有一项是符合题目要求的。
1.已知集合A={0,2},B={-2,-1,0,1,2},则AIB? A.{0,2} 2.设z?B.{1,2}
C.{0}
D.{?2,?1,0,1,2}
1?i?2i,则|z|? 1?iB.
A.0
1 2C.1 D.2 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:
则下面结论中不正确的是 A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
文科数学试题 第1页(共9页)
x2y24.已知椭圆C:2??1的一个焦点为(2,0),则C的离心率为
a41A.
3B.
1 2C.2 2D.22 35.已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A.122π
B.12π
C.82π
D.10π
6.设函数f(x)?x3?(a?1)x2?ax. 若f(x)为奇函数,则曲线y?f(x)在点(0,0)处的切线方程为 A.y??2x
B.y??x
C.y?2x
D.y?x
uuur7.在△ABC中,AD为BC边上的中线,E为AD的中点,则EB?
r1uuurr3uuur3uuu1uuuA.AB?AC B.AB?AC
4444r1uuurr3uuur3uuu1uuuC.AB?AC D.AB?AC
44448.已知函数f(x)?2cos2x?sin2x?2,则 A.f(x)的最小正周期为π,最大值为3 B.f(x)的最小正周期为π,最大值为4 C.f(x)的最小正周期为2π,最大值为3 D.f(x)的最小正周期为2π,最大值为4 9.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M在正视图上的对应点为A,圆柱表 面上的点N在左视图上的对应点为B,则在此圆柱侧 面上,从M到N的路径中,最短路径的长度为 A.217 C.3
B.25 D.2
10.在长方体ABCD?A1B1C1D1中,AB?BC?2,AC1与平面BB1C1C所成的角为30?,
则该长方体的体积为 A.8
B.62 C.82
D.83 11.已知角?的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),
B(2,b),且cos2??2,则|a?b|? 3B.5 51A.
5C.25 5D.1
文科数学试题 第2页(共9页)
?2?x,x≤0,12.设函数f(x)?? 则满足f(x?1)?f(2x)的x的取值范围是
1,x?0,?A.(??,?1]
B.(0,??) C.(?1,0) D.(??,0)
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数f(x)?log2(x2?a). 若f(3)?1,则a? .
?x?2y?2≤0,?14.若x,y满足约束条件?x?y?1≥0, 则z?3x?2y的最大值为 .
?y≤0,?15.直线y?x?1与圆x2?y2?2y?3?0交于A,B两点,则|AB|? . c. 已知bsinC?csinB?4asinBsinC,16.C的对边分别为a,b,△ABC的内角A,B,
b2?c2?a2?8,则△ABC的面积为 .
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必
考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。 (一)必考题:共60分。 17.(12分)
已知数列{an}满足a1?1,nan?1?2(n?1)an. 设bn?(1)求b1,b2,b3;
(2)判断数列{bn}是否为等比数列,并说明理由; (3)求{an}的通项公式. 18.(12分)
如图,在平行四边形ABCM中,
an. nAB?AC?3,?ACM?90?. 以AC为折痕将
△ACM折起,使点M到达点D的位置,且
AB?DA.
(1)证明:平面ACD?平面ABC; (2)Q为线段AD上一点,P为线段BC上一点,且BP?DQ?2DA,求三棱锥Q?ABP的体积. 3文科数学试题 第3页(共9页)
19.(12分)
某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
日用水量 [0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) 频数 1 3 2 4 9 26 5 使用了节水龙头50天的日用水量频数分布表
日用水量 频数 [0,0.1) 1 [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) 5 13 10 16 5 (1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图;
(2)估计该家庭使用节水龙头后,日用水量小于0.35m3的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)
20.(12分)
y2?2x,点A(2,0),B(?2,0),过点A的直线l与C交于M,N两点. 设抛物线C:(1)当l与x轴垂直时,求直线BM的方程; (2)证明:?ABM??ABN.
文科数学试题 第4页(共9页)
21.(12分)
已知函数f(x)?aex?lnx?1.
(1)设x?2是f(x)的极值点,求a,并求f(x)的单调区间; 1(2)证明:当a≥时,f(x)≥0.
e
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做
的第一题计分。
22.[选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C1的方程为y?k|x|?2. 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为?2?2?cos??3?0.
(1)求C2的直角坐标方程;
(2)若C1与C2有且仅有三个公共点,求C1的方程.
23.[选修4-5:不等式选讲](10分)
已知f(x)?|x?1|?|ax?1|.
(1)当a?1时,求不等式f(x)?1的解集;
(2)若x?(0,1)时不等式f(x)?x成立,求a的取值范围.
文科数学试题 第5页(共9页)