好文档 - 专业文书写作范文服务资料分享网站

高中物理3.4《力的合成与分解》教案(粤教版必修1)

天下 分享 时间: 加入收藏 我要投稿 点赞

力的合成和分解 教案

教学目标:

1.理解合力、分力的概念,掌握矢量合成的平行四边形定则。 2.能够运用平行四边形定则或力三角形定则解决力的合成与分解问题。 3.进一步熟悉受力分析的基本方法,培养学生处理力学问题的基本技能。

教学重点:力的平行四边形定则 教学难点:受力分析

教学方法:讲练结合,计算机辅助教学 教学过程:

一、标量和矢量

1.将物理量区分为矢量和标量体现了用分类方法研究物理问题的思想。

2.矢量和标量的根本区别在于它们遵从不同的运算法则:标量用代数法;矢量用平行四边形定则或三角形定则。

矢量的合成与分解都遵从平行四边形定则(可简化成三角形定则)。平行四边形定则实质上是一种等效替换的方法。一个矢量(合矢量)的作用效果和另外几个矢量(分矢量)共同作用的效果相同,就可以用这一个矢量代替那几个矢量,也可以用那几个矢量代替这一个矢量,而不改变原来的作用效果。

3.同一直线上矢量的合成可转为代数法,即规定某一方向为正方向。与正方向相同的物理量用正号代入.相反的用负号代入,然后求代数和,最后结果的正、负体现了方向,但有些物理量虽也有正负之分,运算法则也一样.但不能认为是矢量,最后结果的正负也不表示方向如:功、重力势能、电势能、电势等。

二、力的合成与分解

力的合成与分解体现了用等效的方法研究物理问题。

合成与分解是为了研究问题的方便而引人的一种方法。用合力来代替几个力时必须把合力与各分力脱钩,即考虑合力则不能考虑分力,同理在力的分解时只考虑分力而不能同时考虑合力。

1.力的合成

(1)力的合成的本质就在于保证作用效果相同的前提下,用一个力的作用代替几个力的作用,这个力就是那几个力的“等效力”(合力)。力的平行四边形定则是运用“等效”观点,通过实验总结出来的共点力的合成法则,它给出了寻求这种“等效代换”所遵循的规律。

(2)平行四边形定则可简化成三角形

F1 F1

F2 F2

定则。

由三角形定则还可以得到一个有用的推论:如果n个力首尾相接组成一个封闭多边形,则这n个力的合力为零。

(3)共点的两个力合力的大小范围是 |F1-F2| ≤ F合≤ F1+F2

(4)共点的三个力合力的最大值为三个力的大小之和,最小值可能为零。

【例1】物体受到互相垂直的两个力F1、F2的作用,若两力大小分别为53N、5 N,求这两个力的合力.

解析:根据平行四边形定则作出平行四边形,如图所示,由于F1、F2相互垂直,所以作出的平行四边形为矩形,对角线分成的两个三角形为直角三角形,由勾股定理得:

F?F1?F2?(53)2?52N=10 N

合力的方向与F1的夹角θ为:

22tg??F253 θ=30° ??F15332.力的分解

(1)力的分解遵循平行四边形法则,力的分解相当于已知对角线求邻边。

(2)两个力的合力惟一确定,一个力的两个分力在无附加条件时,从理论上讲可分解为无数组分力,但在具体问题中,应根据力实际产生的效果来分解。

【例2】将一个力分解为两个互相垂直的力,有几种分法?

解析:有无数种分法,只要在表示这个力的有向线段的一段任意画一条直线,在有向线段的另一端向这条直线做垂线,就是一种方法。如图所示。

(3)几种有条件的力的分解

①已知两个分力的方向,求两个分力的大小时,有唯一解。

②已知一个分力的大小和方向,求另一个分力的大小和方向时,有唯一解。 ③已知两个分力的大小,求两个分力的方向时,其分解不惟一。

④已知一个分力的大小和另一个分力的方向,求这个分力的方向和另一个分力的大小时,其分解方法可能惟一,也可能不惟一。

(4)用力的矢量三角形定则分析力最小值的规律: ①当已知合力F的大小、方向及一个分力F1的方向时,另力F2取最小值的条件是两分力垂直。如图所示,F2的最小值为:

一个分F2min=F

sinα

②当已知合力F的方向及一个分力F1的大小、方向时,另一个分力F2取最小值的条件是:所求分力F2

与合力F垂直,如图所示,F2的最小值为:F2min=F1sinα

③当已知合力F的大小及一个分力F1的大小时,另一个分力F2取最小值的条件是:已知大小的分力F1

与合力F同方向,F2的最小值为|F-F1|

(5)正交分解法:

把一个力分解成两个互相垂直的分力,这种分解方法称为正交分解法。 用正交分解法求合力的步骤:

①首先建立平面直角坐标系,并确定正方向

②把各个力向x轴、y轴上投影,但应注意的是:与确定的正方向相同的力为正,与确定的正方向相反的为负,这样,就用正、负号表示了被正交分解的力的分力的方向

③求在x轴上的各分力的代数和Fx合和在y轴上的各分力的代数和Fy合 ④求合力的大小 F?(Fx合)2?(Fy合)2

(α为合力F与x轴的夹角)

合力的方向:tanα=

Fy合Fx合【例3】质量为m的木块在推力F作用下,在水平地面上做匀速运动.已知木块与地面间的动摩擦因数为μ,那么木块受到的滑动摩擦力为下列各值的哪个?

A.μmg B.μ(mg+Fsinθ) C.μ(mg+Fsinθ) D.Fcosθ

解析:木块匀速运动时受到四个力的作用:重力mg、推力F、支持力FN、摩擦力Fμ.沿水平方向建立x轴,将F进行正交分解如图(这样建立坐标系只需分解F),由于木块做匀速直线运动,所以,在x轴上,向左的力等于向右的力(水平方向二力平衡);在y轴上向上的力等于向下的力(竖直方向二力平衡).即

Fcosθ=Fμ ① FN=mg+Fsinθ ② 又由于Fμ=μFN ③

∴Fμ=μ(mg+Fsinθ) 故B、D答案是正确的. 三、综合应用举例

【例4】水平横粱的一端A插在墙壁内,另一端装有一小滑轮B,一轻绳的一端C固定于墙上,另一端跨过滑轮后悬挂一质量m=10 kg的重物,∠CBA=30°,如图甲所示,

滑轮受到绳子的作用力为(g=10m/s2)

A.50N B.503N C.100N D.1003N

解析:取小滑轮作为研究对象,悬挂重物的绳中的弹力是T=mg=10×10N=100 N,故小滑轮受绳的作用力沿BC、BD方向的大小都是100N,分析受力如图(乙)所示. ∠CBD=120°,∠CBF=∠DBF,∴∠CBF=60°,⊿CBF是等边三角形.故F=100 N。故选C。

【例5】已知质量为m、电荷为q的小球,在匀强电场中由静止释放后沿直向斜下方运动(OP和竖直方向成θ角),那么所加匀强电场的场强E的最小值是少?

解析:根据题意,释放后小球所受合力的方向必为OP方向。用三角形定则

mg 从右

θ 线OP多

图中不难看出:重力矢量OG的大小方向确定后,合力F的方向确定(为OP方向),而电场力Eq的矢量起点必须在G点,终点必须在OP射线上。在图中画出一组可能的电场力,不难看出,只有当电场力方向与OP方向垂直时Eq才会最小,所以E也最小,有E =mgsin? q【例6】 A的质量是m,A、B始终相对静止,共同沿水平面向右运动。当a1=0时和a2=0.75g时,B对A的作用力FB各多大?

解析:一定要审清题:B对A的作用力FB是B对A的支持力和摩擦力的合力。而A所受重力G=mg和FB的合力是F=ma。

当a1=0时,G与 FB二力平衡,所以FB大小为mg,方向竖直向上。

当a2=0.75g时,用平行四边形定则作图:先画出重力(包括大小和方向),再画出A所受合力F的大小和方向,再根据平行四边形定则画出FB。由已知可得FB的大小FB=1.25mg,方向与竖直方向成37o角斜向右上方。

G v a FB α F

高!考-试.题。库

9sdsg0fhx19jajr88ky455t2h95xc900w9t
领取福利

微信扫码领取福利

微信扫码分享