.
±±Ô¼×ÔÖ÷ÕÐÉúÊýѧģÄâÊÔÌâÒ»
Ò»¡¢Ñ¡ÔñÌ⣨±¾ÌâÂú·Ö48·Ö£¬Ã¿Ð¡Ìâ8·Ö£©
1£®ÒÑÖªÊýÁÐ{an}Âú×ã3an+1+an=4(n¡Ý1)£¬ÇÒa1=9£¬ÆäÇ°nÏîÖ®ºÍΪSn¡£ÔòÂú×ã²»µÈʽ|Sn-n-6|<
1µÄ×îСÕûÊýnÊÇ£¨ £© 125 A£®5 B£®6 C£®7 D£®8 2£®ÉèOÊÇÕýÈýÀâ׶P-ABCµ×ÃæÊÇÈý½ÇÐÎABCµÄÖÐÐÄ£¬¹ýOµÄ¶¯Æ½ÃæÓëPC½»ÓÚS£¬ÓëPA¡¢PBµÄÑÓ³¤Ïß·Ö±ð½»ÓÚQ¡¢R£¬ÔòºÍʽ
111??£¨ £© PQPRPS £¬Ôò
B£®ÓÐ×îСֵ¶øÎÞ×î´óÖµ
D£®ÊÇÒ»¸öÓëÃæQPSÎ޹صij£Êý
2005n?1A£®ÓÐ×î´óÖµ¶øÎÞ×îСֵ C£®¼ÈÓÐ×î´óÖµÓÖÓÐ×îСֵ£¬Á½Õß²»µÈ
3£®¸ø¶¨ÊýÁÐ{xn}£¬x1=1£¬ÇÒxn+1=
3xn?13?xn
?xn=£¨ £©
A£®1 B£®-1
C£®2+3
D£®-2+3
4£®ÒÑÖªa=(cos
22¦Ð, sin¦Ð), OA?a?b, OB?a?b£¬Èô¡÷OABÊÇÒÔOΪֱ½Ç¶¥µãµÄµÈ33
B£®
ÑüÖ±½ÇÈý½ÇÐΣ¬Ôò¡÷OABµÄÃæ»ýµÈÓÚ£¨ £©
A£®1
1 2 C£®2 D£®
3 2x2y2??1ÉÏÈÎÒ»µãP£¬×÷ÍÖÔ²CµÄÓÒ×¼ÏߵĴ¹ÏßPH£¨HΪ´¹×㣩5£®¹ýÍÖÔ²C£º£¬ÑÓ³¤32PHµ½µãQ£¬Ê¹|HQ|=¦Ë|PH|(¦Ë¡Ý1)¡£µ±µãPÔÚÍÖÔ²CÉÏÔ˶¯Ê±£¬µãQµÄ¹ì¼£µÄÀëÐÄÂʵÄÈ¡
Öµ·¶Î§Îª£¨ £©
A£®(0,3] 3
B£®(33,] 32
C£®[3,1) 3
D£®(3,1) 2b6£®ÔÚ¡÷ABCÖУ¬½ÇA¡¢B¡¢CµÄ¶Ô±ß·Ö±ð¼ÇΪa¡¢b¡¢c(b¡Ù1)£¬ÇÒx=logb(4x-4)µÄ¸ù£¬Ôò¡÷ABC£¨ £© A£®ÊǵÈÑüÈý½ÇÐΣ¬µ«²»ÊÇÖ±½ÇÈý½ÇÐÎ C£®ÊǵÈÑüÖ±½ÇÈý½ÇÐÎ ¶þ¡¢½â´ðÌ⣨ÿСÌâ18·Ö£¬¹²72·Ö£© 7£®ÒÑÖªa, b, c¡ÊR+£¬ÇÒÂú×ã
CsinB£¬¶¼ÊÇ·½³ÌlogAsinAB£®ÊÇÖ±½ÇÈý½ÇÐΣ¬µ«²»ÊǵÈÑüÈý½ÇÐÎ D£®²»ÊǵÈÑüÈý½ÇÐΣ¬Ò²²»ÊÇÖ±½ÇÈý½ÇÐÎ
kabc¡Ý(a+b)2+(a+b+4c)2£¬ÇókµÄ×îСֵ¡£
a?b?c8.ÇóËùÓÐʵ¶àÏîʽfºÍg£¬Ê¹µÃ¶ÔËùÓÐx¡ÊR£¬ÓУº(x2+x+1)f(x2-x+1)=(x2-x+1)g(x2+x+1)¡£ 9£®ÒÑÖª°ë¾¶Îª1µÄ¶¨Ô²¡ÑPµÄÔ²ÐÄPµ½¶¨Ö±ÏßlµÄ¾àÀëΪ2£¬QÊÇlÉÏÒ»¶¯µã£¬¡ÑQÓë¡ÑPÏàÍâÇУ¬¡ÑQ½»lÓÚM¡¢NÁ½µã£¬¶ÔÓÚÈÎÒâÖ±¾¶MN£¬Æ½ÃæÉϺãÓÐÒ»¶¨µãA£¬Ê¹µÃ¡ÏMANΪ¶¨Öµ¡£Çó¡ÏMANµÄ¶ÈÊý¡£ 10£®ÒÑÖªa>0£¬º¯Êýf(x)=ax-bx2,
.
.
£¨1£©µ±b>0ʱ£¬Èô¶ÔÈÎÒâx¡ÊR¶¼ÓÐf(x)¡Ü1£¬Ö¤Ã÷£ºa¡Ü2b£»
£¨2£©µ±b>1ʱ£¬Ö¤Ã÷£º¶ÔÈÎÒâx¡Ê[0, 1], |f(x)|¡Ü1µÄ³äÒªÌõ¼þÊÇ£ºb-1¡Üa¡Ü2b£» £¨3£©µ±0
²Î¿¼´ð°¸£º
.
.
Ò»¡¢Ñ¡ÔñÌâ
1£®ÓɵÝÍÆʽµÃ£º3(an+1-1)=-(an-1)£¬Ôò{an-1}ÊÇÒÔ8ΪÊ×Ï¹«±ÈΪ-
1µÄµÈ±ÈÊýÁУ¬¡à318[1?(?)n]3=6-6¡Á(-1)n£¬¡à|S-n-6|=6¡Á(1)n<1£¬µÃ£ºSn-n=(a1-1)+(a2-1)+¡+(an-1)=n1331251?33n-1>250£¬¡àÂú×ãÌõ¼þµÄ×îСÕûÊýn=7£¬¹ÊÑ¡C¡£
2£®ÉèÕýÈýÀâ׶P-ABCÖУ¬¸÷²àÀâÁ½Á½¼Ð½ÇΪ¦Á£¬PCÓëÃæPABËù³É½ÇΪ¦Â£¬ÔòvS-PQR=
¡÷PQR
1S311(PQ¡¤PRsin¦Á)¡¤PS¡¤sin¦Â¡£ÁíÒ»·½Ã棬¼ÇOµ½¸÷ÃæµÄ¾àÀëΪd£¬Ôò321111d1vS-PQR=vO-PQR+vO-PRS+vO-PQS£¬S¡÷PQR¡¤d=¡÷PRS¡¤d+S¡÷PRS¡¤d+¡÷PQS¡¤d=?PQ¡¤PRsin
333332d1d1¦Á+?PS¡¤PRsin¦Á+?PQ¡¤PS¡¤sin¦Á£¬¹ÊÓУºPQ¡¤PR¡¤PS¡¤sin¦Â
3232¡¤h=
=d(PQ¡¤PR+PR¡¤PS+PQ¡¤PS)£¬¼´
111sin????=³£Êý¡£¹ÊÑ¡D¡£ PQPRPSd3?3£¬3£®xn+1=Áîxn=tan¦Án£¬¡àxn+1=tan(¦Án+), ¡àxn+6=xn, x1=1£¬x2=2+3, x3=-2-3, 631?xn3xn?x4=-1, x5=-2+3, x6=2-3, x7=1£¬¡¡£¬¡àÓÐ
2005n?1?xn?x1?1¡£¹ÊÑ¡A¡£
??(a?b)(a?b)?04£®ÉèÏòÁ¿b=(x, y)£¬Ôò?£¬
??|a?b|?|a?b|?1313(x?,y?)?(?x?,?y??022??x?y?131??2222,)»ò¼´?£¬¼´?. ¡àb?(22??(x?1)2?(y?3)2?(x?1)2?(y?3)2?x?3y?2222?(?311,)£¬¡àS¡÷AOB=|a?b||a?b|=1¡£ 2225£®ÉèP(x1, y1)£¬Q(x, y)£¬ÒòΪÓÒ×¼Ïß·½³ÌΪx=3£¬ËùÒÔHµãµÄ×ø±êΪ(3, y)¡£ÓÖ¡ßHQ=¦ËPH£¬
3(1??)?x?HP?1?x1??ËùÒÔ£¬ËùÒÔÓɶ¨±È·Öµã¹«Ê½£¬¿ÉµÃ£º?£¬´úÈëÍÖÔ²·½³Ì£¬µÃQ?PQ1????y1?y.
.
[x?3(1??)]2y23?2?223??1µã¹ì¼£Îª£¬ËùÒÔÀëÐÄÂÊe=?1??[,1)¡£¹ÊÑ¡2223?33?23?C¡£ 6£®ÓÉlog
bx=logb(4x-4)µÃ£ºx2-4x+4=0£¬ËùÒÔx1=x2=2£¬¹ÊC=2A£¬sinB=2sinA£¬ÒòA+B+C=180¡ã£¬
ËùÒÔ3A+B=180¡ã£¬Òò´ËsinB=sin3A£¬¡à3sinA-4sin3A=2sinA£¬¡ßsinA(1-4sin2A)=0£¬ÓÖsinA¡Ù0£¬ËùÒÔsin2A=¶þ¡¢½â´ðÌ⣺
7£®½â£ºÒòΪ(a+b)2+(a+b+4c)2=(a+b)2+[(a+2c)+(b+2c)]2¡Ý(2ab)2+(22ac+22bc)2=
11£¬¶øsinA>0£¬¡àsinA=¡£Òò´ËA=30¡ã,B=90¡ã,C=60¡ã¡£¹ÊÑ¡B¡£ 42(a?b)2?(a?b?4c)2?(a?b?c) 4ab+8ac+8bc+16cab¡£ËùÒÔ
abc221abc5¡Ý8(53)?(5)?100¡£ 22242abc2 µ±a=b=2c>0ʱµÈºÅ³ÉÁ¢¡£¹ÊkµÄ×îСֵΪ100¡£
8¡¢ÉèwÊÇ1µÄ·ÇʵµÄÁ¢·½¸ù£¬Âú×ãw2+w+1=0£¬Ôòg(w2+w+1)g(0)=0£¬Éè¦ÁΪ-1µÄ·ÇʵµÄÁ¢·½¸ù£¬Ôòf(¦Á2-¦Á+1)=f(0)=0£¬¹Ê¿ÉÉ裺f(x)=x¡¤a(x)£»g(x)=x¡¤b(x)¡£Òò´ËÔÌõ¼þ¿É»¯Îª£ºa(x2-x+1)=b(x2+x+1)¡£Áîx=-y£¬µÃ£ºa(y2+y+1)=b(y2-y+1)£¬ 1]¡£ÏÂÃæÖ¤Ã÷ÎÞÇî¶à¸önʹµÃ£ºa(n2+3n+3)=a(1)¡£ÓÉn=1¿ÉµÃ£ºa(1)=a(7)£¬¼ÙÉèa[(n-1)2+3(n-1)+3]=a(1)(n¡Ý2)£¬Ôòa[(n+1)2+3(n+1)+3]=a[(n+2)2+(n+2)+1]=a[(n+1)2-(n+1)+1]=a[(n-1)2+3(n-1)
+3]=a(1)¡£ÓÉÓÚ¶àÏîʽa(x)-a(1)ÓÐÎÞÇî¶à¸ö¸ù£¬ËùÒÔa(x)-a(1)ÊÇÁã¶àÏîʽ£¬¼´a(x)Ϊ³£Êý£¬Òò´Ëf(x)=kx£¬ÀàËÆ¿ÉÖª£ºg(x)=kx¡£
9£®ÒÔlΪxÖᣬµãPµ½lµÄ´¹ÏßΪyÖὨÁ¢ÈçͼËùʾµÄÖ±½Ç×ø±êϵ£¬ÉèQµÄ×ø±êΪ(x, 0)£¬µãA(k, ¦Ë)£¬¡ÑQµÄ°ë¾¶Îªr£¬Ôò£ºM(x-r, 0), N(x+r, 0), P(2, 0), PQ=x2?22=1+r¡£ËùÒÔx=
¡Àr2?2r?3, ¡àtan¡ÏMAN=
kAN?kAM1?kAN?kAMo?ro?h??x?r?hx?r?h
o?ho?h1??x?r?hx?r?k?2rh2rh2rh??(x?k)2?r2?h2(?r2?2r?3)2?r2?h2h2?k2?3?2r?2kr2?2r?31£¬ËùÒÔm+r?kr2?2r?3=nhr£¬¡àm+(1-nh)r=n£¬Áî2m=h2+k2-3£¬tan¡ÏMAN=
?kr2?2r?3£¬Á½±ßƽ·½£¬µÃ£ºm2+2m(1-nh)r-(1-nh)2r2=k2r2+2k2r-3k2£¬ÒòΪ¶ÔÓÚÈÎÒâʵ?m2??3k2(1)?2Êýr¡Ý1£¬ÉÏʽºã³ÉÁ¢£¬ËùÒÔ?2m(1?nh)?2k(2)£¬ÓÉ£¨1£©£¨2£©Ê½£¬µÃm=0, k=0£¬ÓÉ£¨3£©
?(1?nh)2?k2(3)?.
.
ʽ£¬µÃn=
11¡£ÓÉ2m=h2+k2-3µÃh=¡À3£¬ËùÒÔtan¡ÏMAN==h=¡À3¡£ËùÒÔ¡ÏMAN=60¡ãhn»ò120¡ã£¨Éᣩ£¨µ±Q(0, 0), r=1ʱ¡ÏMAN=60¡ã£©£¬¹Ê¡ÏMAN=60¡ã¡£
a2a2a2a10£¨1£©Ö¤£ºÒÀÌâÉ裬¶ÔÈÎÒâx¡ÊR£¬¶¼ÓÐf(x)¡Ü1¡£¡ßf(x)=-b(x-)+£¬¡àf()=¡Ü
4b2b2b4b1£¬¡ßa>0, b>0, ¡àa¡Ü2b¡£
£¨2£©Ö¤£º£¨±ØÒªÐÔ£©£¬¶ÔÈÎÒâx¡Ê[0, 1]£¬|f(x)|¡Ü1?-1¡Üf(x)¾Ý´Ë¿ÉÍƳö-1¡Üf(1)¼´a-b¡Ý
-1£¬¡àa¡Ýb-1¡£¶ÔÈÎÒâx¡Ê[0, 1]£¬|f(x)|¡Ü1?f(x)¡Ü1£¬ÒòΪb>1£¬¿ÉÍƳöf(
1b)¡Ü1¡£¼´a¡¤1b-¡Ü1£¬¡àa¡Ü2b£¬ËùÒÔb-1¡Üa¡Ü2b¡£
£¨³ä·ÖÐÔ£©£ºÒòb>1, a¡Ýb-1£¬¶ÔÈÎÒâx¡Ê[0, 1]£¬¿ÉÒÔÍƳö£ºax-bx2¡Ýb(x-x2)-x¡Ý-x
¡Ý-1£¬¼´£ºax-bx2¡Ý-1£»ÒòΪb>1£¬a¡Ü2b£¬¶ÔÈÎÒâx¡Ê[0, 1]£¬¿ÉÍƳöax-bx2¡Ü2b-bx2¡Ü1£¬¼´ax-bx2¡Ü1£¬¡à-1¡Üf(x)¡Ü1¡£
×ÛÉÏ£¬µ±b>1ʱ£¬¶ÔÈÎÒâx¡Ê[0, 1], |f(x)|¡Ü1µÄ³äÒªÌõ¼þÊÇ£ºb-1¡Üa¡Ü2b¡£ £¨3£©½â£ºÒòΪa>0, 0
f(x)=ax-bx2¡Ý-b¡Ý-1£¬¼´f(x)¡Ý-1£»
f(x)¡Ü1?f(1)¡Ü1?a-b¡Ü1£¬¼´a¡Üb+1£» a¡Üb+1?f(x)¡Ü(b+1)x-bx2¡Ü1£¬¼´f(x)¡Ü1¡£
ËùÒÔ£¬µ±a>0, 0
.