王宏林,王庆贵
https://doi.org/10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2
[7] Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Heikki, S.L., Putten, W.H. and Van Der Wall, D.H. (2004) Ecological
Linkages between Aboveground and Belowground Biota. Science, 304, 1629-1633. https://doi.org/10.1126/science.1094875 [8] Kardol, P. and Wardle, D.A. (2010) How Understanding Aboveground-Belowground Linkages Can Assist Restoration
Ecology. Trends in Ecology, 25, 670-679. https://doi.org/10.1016/j.tree.2010.09.001 [9] Bernard, E.C. (1992) Soil Nematode Biodiversity. Biology Fertility of Soils, 14, 99-103.
https://doi.org/10.1007/BF00336257
[10] Yeates, G.W. and Bongers, T. (1999) Nematode Diversity in Agroecosystems. In: Invertebrate Biodiversity as Bioin-dicators of Sustainable Landscapes, Elsevier, Amsterdam, 113-135. https://doi.org/10.1016/B978-0-444-50019-9.50010-8 [11] Kayani, M.Z., Mukhtar, T. and Hussain, M.A. (2017) Effects of Southern Root Knot Nematode Population Densities
and Plant Age on Growth and Yield Parameters of Cucumber. Crop Protection, 92, 207-212. https://doi.org/10.1016/j.cropro.2016.09.007 [12] Zhou, J., Chen, D., Huang, R., Huang, G., Yuan, Y. and Fan, H. (2024) Effects of Bacterial-Feeding Nematodes on
Soil Microbial Activity and the Microbial Community in Oil-Contaminated Soil. Journal of Environmental Manage-ment, 234, 424-430. https://doi.org/10.1016/j.jenvman.2024.01.021 [13] Yeates, G.W. (2003) Nematodes as Soil Indicators: Functional and Biodiversity Aspects. Biology and Fertility of Soils,
37, 199-210. https://doi.org/10.1007/s00374-003-0586-5 [14] Van Den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D.A., et al. (2024) Soil Nematode
Abundance and Functional Group Composition at a Global Scale. Nature, 572, 194-198. https://doi.org/10.1038/s41586-019-1418-6 [15] Song, M., Jing, S., Zhou, Y., Hui, Y., Zhu, L., Wang, F., et al. (2015) Dynamics of Soil Nematode Communities in
Wheat Fields under Different Nitrogen Management in Northern China Plain. European Journal of Soil Biology, 71, 13-20. https://doi.org/10.1016/j.ejsobi.2015.09.002 [16] Hu, J., Chen, G.R., Hassan, W.M., Han, C., Li, J. and Du, G. (2017) Fertilization Influences the Nematode Community
through Changing the Plant Community in the Tibetan Plateau. European Journal of Soil Biology, 78, 7-16. https://doi.org/10.1016/j.ejsobi.2016.11.001 [17] Shaw, E.A., Boot, C.M., Moore, J.C., Wall, D.H. and Baron, J.S. (2024) Long-Term Nitrogen Addition Shifts the Soil
Nematode Community to Bacterivore-Dominated and Reduces Its Ecological Maturity in a Subalpine Forest. Soil Bi-ology and Biochemistry, 130, 177-184. https://doi.org/10.1016/j.soilbio.2024.12.007 [18] Liu, W., Jiang, L., Hu, S., Li, L., Liu, L. and Wan, S. (2014) Decoupling of Soil Microbes and Plants with Increasing
Anthropogenic Nitrogen Inputs in a Temperate Steppe. Soil Biology Biochemistry, 72, 116-122. https://doi.org/10.1016/j.soilbio.2014.01.022 [19] Liu, J., Chen, Y., Du, C., Liu, X., Ma, Q., Zhang, X., et al. (2024) Interactive Effects of Nitrogen Addition and Litter
on Soil Nematodes in Grassland. European Journal of Soil Science, 70, 697-706. https://doi.org/10.1111/ejss.12779 [20] Sun, X., Zhang, X., Zhang, S., Dai, G., Han, S. and Liang, W. (2013) Soil Nematode Responses to Increases in Nitro-gen Deposition and Precipitation in a Temperate Forest. PLoS ONE, 8, e82468. https://doi.org/10.1371/journal.pone.0082468 [21] Liang, S., Kou, X., Li, Y., Lü, X., Wang, J. and Li, Q. (2024) Soil Nematode Community Composition and Stability
under Different Nitrogen Additions in a Semiarid Grassland. Global Ecology and Conservation, 22, e00965. https://doi.org/10.1016/j.gecco.2024.e00965 [22] Wei, C., Zheng, H., Li, Q., Lü, X., Yu, Q., Zhang, H., et al. (2012) Nitrogen Addition Regulates Soil Nematode Com-munity Composition through Ammonium Suppression. PLoS ONE, 7, e43384. https://doi.org/10.1371/journal.pone.0043384 [23] Hu, J., Chen, G.R., Hassan, W.M., Han, C., Li, J. and Du, G. (2017) Fertilization Influences the Nematode Community
through Changing the Plant Community in the Tibetan Plateau. European Journal of Soil Biology, 78, 7-16. https://doi.org/10.1016/j.ejsobi.2016.11.001 [24] Lokupitiya, E., Stanton, N., Seville, R. and Snider, J. (2000) Effects of Increased Nitrogen Deposition on Soil Nema-todes in Alpine Tundra Soils. Pedobiologia, 44, 591-608. https://doi.org/10.1078/S0031-4056(04)70074-8 [25] Zhao, J., Wang, F., Li, J., Zou, B., Wang, X., Li, Z., et al. (2014) Effects of Experimental Nitrogen and/or Phosphorus
Additions on Soil Nematode Communities in a Secondary Tropical Forest. Soil Biology and Biochemistry, 75, 1-10. https://doi.org/10.1016/j.soilbio.2014.03.019 [26] Bongers, A.M.T. (1988) De nematoden van Nederland.
DOI: 10.12677/ije.2024.92024
184
世界生态学
王宏林,王庆贵
[27] Song, M., Li, X., Jing, S., Lei, L., Wang, J. and Wan, S. (2016) Responses of Soil Nematodes to Water and Nitrogen
Additions in an Old-Field Grassland. Applied Soil Ecology, 102, 53-60. https://doi.org/10.1016/j.apsoil.2016.02.011 [28] Tenuta, M. and Ferris, H. (2004) Sensitivity of Nematode Life-History Groups to Ions and Osmotic Tensions of Nitro-genous Solutions. Journal of Nematology, 36, 85. [29] 张志委, 胡艳宇, 魏海伟, 侯双利, 殷江霞, 吕晓涛. 氮磷输入对过度放牧退化草原土壤线虫群落的影响[J]. 应
用生态学报, 2024(11): 3903-3910. [30] Williamson, V.M. and Gleason, C.A.J.C. (2003) Plant-Nematode Interactions. Current Opinion in Plant Biology, 6,
327-333. https://doi.org/10.1016/S1369-5266(03)00059-1 [31] Phillips, R.P. and Fahey, T.J. (2006) Tree Species and Mycorrhizal Associations Influence the Magnitude of Rhizos-phere Effects. Ecology, 87, 1302-1313. https://doi.org/10.1890/0012-9658(2006)87[1302:TSAMAI]2.0.CO;2 [32] 王静, 胡靖, 杜国祯. 施氮磷肥对青藏高原高寒草甸土壤线虫群落组成的影响[J]. 草业学报, 2015(12): 20-28. [33] Liang, W., Lou, Y., Li, Q., Zhong, S., Zhang, X., Wang, J.J., et al. (2009) Nematode Faunal Response to Long-Term
Application of Nitrogen Fertilizer and Organic Manure in Northeast China. Soil Biology & Biochemistry, 41, 883-890. https://doi.org/10.1016/j.soilbio.2008.06.018 [34] Sarathchandra, S., Ghani, A., Yeates, G., Burch, G. and Cox, N. (2001) Effect of Nitrogen and Phosphate Fertilisers on
Microbial and Nematode Diversity in Pasture Soils. Soil Biology and Biochemistry, 33, 953-964. https://doi.org/10.1016/S0038-0717(00)00245-5 [35] Eisenhauer, N., Cesarz, S., Koller, R., Reich, P.B. and Worm, K. (2012) Global Change Belowground: Impacts of
Elevated CO2, Nitrogen, and Summer Drought on Soil Food Webs and Biodiversity. Global Change Biology, 18, 435-447. https://doi.org/10.1111/j.1365-2486.2011.02555.x [36] Thakur, M.P., Del Real, I.M., Cesarz, S., Steinauer, K., Reich, P.B., Hobbie, S., et al. (2024) Soil Microbial, Nematode,
and Enzymatic Responses to Elevated CO2, N Fertilization, Warming, and Reduced Precipitation. Soil Biology and Bi-ochemistry, 135, 184-193. https://doi.org/10.1016/j.soilbio.2024.04.020 [37] Butterly, C.R., Phillips, L.A., Wiltshire, J.L., Franks, A.E., Armstrong, R.D., Chen, D., et al. (2016) Long-Term Ef-fects of Elevated CO2 on Carbon and Nitrogen Functional Capacity of Microbial Communities in Three Contrasting Soils. Soil Biology and Biochemistry, 97, 157-167. https://doi.org/10.1016/j.soilbio.2016.03.010 [38] Gaudnik, C., Corcket, E., Clément, B., Delmas, C.E., Gombert-Courvoisier, S., Muller, S., et al. (2011) Detecting the
Footprint of Changing Atmospheric Nitrogen Deposition Loads on Acid Grasslands in the Context of Climate Change. Global Change Biology, 17, 3351-3365. https://doi.org/10.1111/j.1365-2486.2011.02463.x.
DOI: 10.12677/ije.2024.92024
185
世界生态学