2020-2021高中必修五数学上期中一模试卷及答案(2)
一、选择题
1.设?ABC的三个内角A, B, C成等差数列,sinA、sinB、sinC成等比数列,则这
个三角形的形状是 ( ) A.直角三角形
B.等边三角形
C.等腰直角三角形
D.钝角三角形
n?12.已知等比数列?an?的前n项和为Sn,且满足2Sn?2??,则?的值是( )
A.4 B.2 C.?2 D.?4
?x?y?11?0?3.设x,y满足不等式组?7x?y?5?0,若Z?ax?y的最大值为2a?9,最小值为
?3x?y?1?0?a?2,则实数a的取值范围是( ).
A.(??,?7]
B.[?3,1]
C.[1,??)
D.[?7,?3]
4.下列函数中,y的最小值为4的是( )
4A.y?x?
xC.y?ex?4e?x
B.y?2(x2?3)x?22
D.y?sinx?4(0?x??) sinxD.182
5.已知{an}为等差数列,Sn为其前n项和,若a3?7?2a5,则S13?( ) A.49
B.91
C.98
,AB?6.在VABC中,?ABC?A.
?42,BC?3,则sin?BAC?( )
C.310 1010 10B.
10 5D.5 57.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列?an?,则log2?a3?a5?的值为( ) A.8
B.10
C.12
D.16
8.当x??1,2?时,不等式x2?mx?2?0恒成立,则m的取值范围是( ) A.??3,???
B.?22,??
??C.??3,???
D.???22,??
?x?0(k为常数),若目标函数z=x+3y的最大值为8,则9.已知x,y满足条件{y?x2x?y?k?0k=( ) A.-16
B.-6
8C.-
3D.6
10.在VABC中,角A,B,C所对的边分别为a,b,c,S表示VABC的面积,若
ccosB?bcosC?asinA, S?3b2?a2?c2,则?B?
4??A.90? B.60? C.45? D.30?
11.等比数列{an}的前三项和S3?13,若a1,a2?2,a3成等差数列,则公比q?( ) A.3或? C.3或
13B.-3或
1 3131 3D.-3或?
12.在?ABC中,内角A,B,C所对的边分别为a,b,c,若bsin2A?3asinB?0,
cb?3c,则的值为( )
aA.1
B.
3 3C.5 5D.
7 7二、填空题
13.已知对满足4x?4y?5?4xy的任意正实数x,y,都有
x2?2xy?y2?ax?ay?1?0,则实数a的取值范围为______.
14.设数列?an?n?1,n?N???满足a1?2,a2?6,且?an?2?an?1???an?1?an??2,若
?x?表示不超过x的最大整数,则[201920192019??L?]?____________. a1a2a201915.数列?an?满足a1?1,对任意的n?N*都有an?1?a1?an?n,则
111??L??_________. a1a2a201616.已知数列?an?满足a1?1,an?1??1,n?N*,则a2019?__________. 1?an17.已知二次函数f(x)?4x2?2(p?2)x?2p2?p?1,若在区间[?1,1]内至少存在一个实数x使
f(x)?0,则实数p的取值范围是__________.
18.如图所示,在平面四边形ABCD中,AB?2,BC?3,AB?AD,
AC?CD,AD?3AC,则AC?__________.
?3?x?,??19.(理)设函数f(x)?x?1,对任意?,?2??2xf()?4m2f(x)?f(x?1)?4f(m)恒成立,则实数m的取值范围是______. m20.正项等比数列?an?满足a4?a2?18,a6?a2?90,则?an?前5项和为________.
三、解答题
21.已知等差数列?an?的前n项和为Sn,公差d?0,且S3?S5?50,a1,a4,a13成等比数列.
(1)求数列?an?的通项公式;
?b?(2)设?n?是首项为1公比为2的等比数列,求数列?bn?前n项和Tn.
?an?22.如图,在平面四边形ABCD中,AB?42,BC?22,AC?4.
(1)求cos?BAC;
(2)若?D?45?,?BAD?90?,求CD.
23.已知{an}是等差数列,{bn}是各项均为正数的等比数列,且b1=a1=1,b3=a4,b1+b2+b3=a3+a4.
(1)求数列{an},{bn}的通项公式; (2)设cn=anbn,求数列{cn}的前n项和Tn.
24.已知Sn是数列?an?的前n项之和,a1?1,2Sn?nan?1,n?N.
*(1)求数列?an?的通项公式; (2)设bn?(?1)?最小值.
2*25.已知数列?an?的前n项和Sn?pn?qnp,q?R,n?N,且a1?3,S4?24.
a2n?11,数列?bn?的前n项和Tn,若Tn?1?,求正整数n的
an?an?12019??(1)求数列?an?的通项公式;
(2)设bn?2n,求数列?bn?的前n项和Tn.
a226.数列?an?中,a1?1 ,当n?2时,其前n项和Sn满足Sn?an?(Sn?).
12(1)求Sn的表达式; (2)设bn=
Sn,求数列?bn?的前n项和Tn. 2n?1
2020-2021高中必修五数学上期中一模试卷及答案(2)



